In [24]:
% matplotlib inline

from matplotlib import pyplot as plt
from tqdm import tqdm
import numpy as np

class Layer():
    """Learning 'logical and' layer
    """

    def __init__(self, mode, node_num, input_num):
        """init
        param: mode (integer):
            1: 1input&2output
            2: 2input&2output
            3: x0-input xor x1-input
        param: node_num (integer): node num
        param: input_num (integer): input number
        """
        self._mode = mode
        self._node_num = node_num
        self._input_num = input_num
        # Learning rate
        self._rate = 0.01
        # weight to input values default
        self._weight = np.random.rand(node_num, input_num)
        # bias value
        self._bias = np.zeros((node_num, 1))
        # output values
        self._output = None
        # set answer
        self._set_answer(input_num)

    def learn(self, inputs):
        """Learning
        param: inputs (ndarray): input values
        return (float): Difference between output value and correct answer value after learning
        """

        """forward process
        """
        # calculate the state by input values(inputs) and weight(_weight) and(_bias)
        state = self._weight.dot(inputs) + self._bias
        # calculate output value
        self._output = self._activation_func(state)

        """backward process(feedback)
        """
        # get answer value by input values
        answer = self._get_answer(inputs)
        # common coefficient for update parameters
        # derivative value of cost function
        d_cost_func = self._output - answer
        # derivative value of activate function
        one_arr = np.empty((0,(self._node_num - 1)), int)
        for i in range(0, self._node_num):
            one_arr = np.append(one_arr, np.array([[1.]]), axis=0)
        d_activate_func = self._output * (one_arr - self._output)
        # common coefficient
        common_coefficient = d_cost_func * d_activate_func
        # update weight
        self._weight -= self._rate * common_coefficient * inputs
        # update bias
        self._bias -= self._rate * common_coefficient

        # Difference between output value and correct answer value after learning
        diff = self._output - answer
        return (np.power(diff[0][0], 2) / 2) + (np.power(diff[1][0], 2) / 2)

    def _activation_func(self, state):
        """Activation function
        """
        # calculate the output value by the state of neuron(0~1)
        # logistic sigmoid
        return 1 / (1 + np.exp(-state))

    def _get_answer(self, inputs):
        """Get input value of correct answer derived from input value
        param: inputs (ndarray): input values
        return (integer): 0 or 1
        """
        result = []

        if self._mode == 1:
            # 1input&2output
            result = [
                [inputs[0][0]], 
                [0.0 if (inputs[1][0] == 1.0) else 1.0]
            ]
        elif self._mode == 2:
            # 2input&2output
            result = [
                [0.0 if (inputs[inputs == 0.0].size) else 1.0],
                [1.0 if (inputs[inputs == 1.0].size) else 0.0]
            ]

        elif self._mode == 3:
            # xor
            for i in self._answer_matrix:
                if i[0] == inputs[0][0] and i[1] == inputs[1][0]:
                    result = np.array([
                        [i[2]], [i[3]]
                    ])

        return result

    def _set_answer(self, input_num):
        """Make and set answer by input num
        param: input_num (integer): input number
        """
        self._answer_matrix = np.array([
            [0., 0., 0., 0.],
            [0., 1., 0., 1.],
            [1., 0., 0., 1.],
            [1., 1., 1., 0.],
        ])

if __name__ == '__main__':

    """
    1: 1input&2output
    2: 2input&2output
    3: xor
    """
    mode = 2
    # node num
    node_num = 2
    # input num
    input_num = 2
    # learn loop num
    learn_num = 100000
    # result output interval
    interval = 50

    # learning
    l = Layer(
        mode,
        node_num, 
        input_num
    )

    output_x = []
    tmp_y = []
    output_y_max = []
    output_y_avg = []
    output_y_min = []
    for i in tqdm(range(0, learn_num)):
        x = np.round(np.random.rand(node_num, 1))
        diff = l.learn(x)
        tmp_y.append(diff)
        if i % interval == 0:
            # Average, max, min value for each set number of loops
            output_y_max.append(max(tmp_y))
            output_y_avg.append(sum(tmp_y) / len(tmp_y))
            output_y_min.append(min(tmp_y))
            tmp_y = []
            output_x.append(i+1)

    # output
    line_max, line_avg, line_min = plt.plot(
        output_x, output_y_max, 'r-', 
        output_x, output_y_avg, 'g-', 
        output_x, output_y_min, 'b-'
    )
    plt.legend((line_max, line_avg, line_min), ('$max$', '$avg$', '$min$'))
    plt.xlabel('$learn-num$')
    plt.ylabel('$diff-learn-value-and-answer$')
    plt.show()


100%|██████████| 100000/100000 [00:13<00:00, 7607.67it/s]

In [ ]: