In [1]:
import pandas as pd
from Schedule import Schedule


//anaconda/lib/python2.7/site-packages/pandas/computation/__init__.py:19: UserWarning: The installed version of numexpr 2.4.4 is not supported in pandas and will be not be used

  UserWarning)

In [2]:
sched = Schedule('1/1/2015', '1/3/2015')

In [3]:
sched.games.columns


Out[3]:
Index([u'GAME_DATE',      u'H_WL',      u'A_WL', u'Home Team', u'Away Team',
           u'H_PTS',     u'A_PTS',  u'Pts_diff',  u'FGM_home', u'FG3M_home',
        u'FGA_home', u'OREB_home', u'DREB_away',  u'TOV_home',  u'FTM_home',
        u'FTA_home',  u'FGM_away', u'FG3M_away',  u'FGA_away', u'OREB_away',
       u'DREB_home',  u'TOV_away',  u'FTM_away',  u'FTA_away',     u'H_AST',
           u'A_AST',     u'H_STL',     u'A_STL',     u'H_BLK',     u'A_BLK'],
      dtype='object')

In [4]:
sched.games


Out[4]:
GAME_DATE H_WL A_WL Home Team Away Team H_PTS A_PTS Pts_diff FGM_home FG3M_home ... DREB_home TOV_away FTM_away FTA_away H_AST A_AST H_STL A_STL H_BLK A_BLK
64 2015-01-02 0 1 BOS DAL 101 119 -18 38 12 ... 29 11 16 17 22 24 6 8 2 1
149 2015-01-02 1 0 NOP HOU 111 83 28 44 7 ... 37 19 7 11 24 22 12 13 8 3
189 2015-01-03 1 0 CHI BOS 109 104 5 37 6 ... 35 20 9 11 19 26 10 9 9 6
190 2015-01-01 1 0 CHI DEN 106 101 5 38 8 ... 33 12 22 27 22 19 7 4 18 7
269 2015-01-03 1 0 DEN MEM 114 85 29 41 7 ... 40 12 9 13 21 20 6 6 8 8
314 2015-01-02 1 0 GSW TOR 126 105 21 49 12 ... 31 15 15 20 35 23 8 7 8 1
351 2015-01-03 1 0 HOU MIA 115 79 36 41 13 ... 31 21 15 25 21 20 13 6 1 3
391 2015-01-03 1 0 LAC PHI 127 91 36 46 15 ... 34 21 18 26 33 17 13 7 3 1
435 2015-01-02 0 1 LAL MEM 106 109 -3 43 6 ... 33 12 21 31 24 27 10 7 8 4
519 2015-01-02 0 1 MIL IND 91 94 -3 38 7 ... 33 15 16 20 28 24 10 7 7 3
558 2015-01-03 0 1 MIN UTA 89 101 -12 34 6 ... 23 12 14 21 17 23 8 6 5 10
559 2015-01-01 0 1 MIN SAC 107 110 -3 42 7 ... 23 20 25 29 22 23 12 7 6 7
639 2015-01-02 0 1 NYK DET 81 97 -16 32 10 ... 30 16 8 14 18 24 13 10 4 3
681 2015-01-03 0 1 ORL CHA 90 98 -8 33 4 ... 32 14 24 32 18 16 9 4 3 4
682 2015-01-02 0 1 ORL BKN 98 100 -2 37 11 ... 29 22 11 18 22 26 13 7 3 5
805 2015-01-02 1 0 PHX PHI 112 96 16 42 14 ... 35 16 15 25 24 20 9 12 12 7
843 2015-01-03 0 1 POR ATL 107 115 -8 42 13 ... 33 14 23 31 24 17 6 9 7 5
926 2015-01-03 1 0 SAS WAS 101 92 9 43 4 ... 29 6 8 13 27 23 4 6 5 6
967 2015-01-02 1 0 OKC WAS 109 102 7 44 8 ... 32 15 13 15 21 27 8 3 4 1
1170 2015-01-02 0 1 CHA CLE 87 91 -4 32 6 ... 35 7 21 30 20 16 5 8 6 5
1214 2015-01-02 0 1 UTA ATL 92 98 -6 32 10 ... 30 10 26 30 18 24 6 9 9 3

21 rows × 30 columns


In [5]:
sched.add_four_factors()


Out[5]:
GAME_DATE H_WL A_WL Home Team Away Team H_PTS A_PTS Pts_diff FGM_home FG3M_home ... H_BLK A_BLK H_FF_EFG H_FF_ORB H_FF_FTFGA H_FF_TOV A_FF_EFG A_FF_ORB A_FF_FTFGA A_FF_TOV
64 2015-01-02 0 1 BOS DAL 101 119 -18 38 12 ... 2 1 0.494382 0.200000 0.146067 0.119570 0.536458 0.355556 0.166667 0.111698
149 2015-01-02 1 0 NOP HOU 111 83 28 44 7 ... 8 3 0.572289 0.324324 0.192771 0.184049 0.431818 0.260000 0.079545 0.192230
189 2015-01-03 1 0 CHI BOS 109 104 5 37 6 ... 9 6 0.400000 0.406780 0.290000 0.145985 0.475000 0.222222 0.090000 0.174155
190 2015-01-01 1 0 CHI DEN 106 101 5 38 8 ... 18 7 0.461538 0.245283 0.241758 0.072917 0.429348 0.340000 0.239130 0.121359
269 2015-01-03 1 0 DEN MEM 114 85 29 41 7 ... 8 8 0.563291 0.216216 0.316456 0.133142 0.441860 0.166667 0.104651 0.125366
314 2015-01-02 1 0 GSW TOR 126 105 21 49 12 ... 8 1 0.597826 0.350000 0.173913 0.093946 0.523256 0.261905 0.174419 0.151822
351 2015-01-03 1 0 HOU MIA 115 79 36 41 13 ... 1 3 0.572289 0.404762 0.240964 0.169635 0.470588 0.205128 0.220588 0.228261
391 2015-01-03 1 0 LAC PHI 127 91 36 46 15 ... 3 1 0.629412 0.230769 0.235294 0.083822 0.462025 0.306122 0.227848 0.217752
435 2015-01-02 0 1 LAL MEM 106 109 -3 43 6 ... 8 4 0.567901 0.131579 0.172840 0.133525 0.523810 0.282609 0.250000 0.124172
519 2015-01-02 0 1 MIL IND 91 94 -3 38 7 ... 7 3 0.466292 0.222222 0.089888 0.125786 0.481481 0.232558 0.197531 0.158228
558 2015-01-03 0 1 MIN UTA 89 101 -12 34 6 ... 5 10 0.430233 0.280000 0.174419 0.090992 0.580000 0.323529 0.186667 0.140779
559 2015-01-01 0 1 MIN SAC 107 110 -3 42 7 ... 6 7 0.500000 0.319149 0.175824 0.140449 0.574324 0.303030 0.337838 0.206697
639 2015-01-02 0 1 NYK DET 81 97 -16 32 10 ... 4 3 0.406593 0.298246 0.076923 0.120667 0.585526 0.230769 0.105263 0.179453
681 2015-01-03 0 1 ORL CHA 90 98 -8 33 4 ... 3 4 0.402299 0.244898 0.229885 0.076721 0.474359 0.333333 0.307692 0.155417
682 2015-01-02 0 1 ORL BKN 98 100 -2 37 11 ... 3 5 0.482955 0.163265 0.147727 0.110220 0.618056 0.121212 0.152778 0.224673
805 2015-01-02 1 0 PHX PHI 112 96 16 42 14 ... 12 7 0.583333 0.342105 0.166667 0.195796 0.465517 0.313725 0.172414 0.163265
843 2015-01-03 0 1 POR ATL 107 115 -8 42 13 ... 7 5 0.521505 0.234043 0.107527 0.170973 0.547619 0.232558 0.273810 0.137741
926 2015-01-03 1 0 SAS WAS 101 92 9 43 4 ... 5 6 0.576923 0.290323 0.141026 0.115048 0.512195 0.236842 0.097561 0.070822
967 2015-01-02 1 0 OKC WAS 109 102 7 44 8 ... 4 1 0.578313 0.162162 0.156627 0.104866 0.529762 0.200000 0.154762 0.153689
1170 2015-01-02 0 1 CHA CLE 87 91 -4 32 6 ... 6 5 0.402299 0.312500 0.195402 0.143678 0.402299 0.270833 0.241379 0.074310
1214 2015-01-02 0 1 UTA ATL 92 98 -6 32 10 ... 9 3 0.430233 0.320755 0.209302 0.149637 0.444444 0.268293 0.320988 0.107296

21 rows × 38 columns


In [8]:
d1=pd.to_datetime('1/1/2001')
d2=pd.to_datetime('1/2/2001')
(d2-d1).days


Out[8]:
1

In [ ]: