In [15]:
from nba_py import team
import pandas as pd

In [3]:
#get list of teams
team_list = team.TeamList()
team_list.info()


Out[3]:
LEAGUE_ID TEAM_ID MIN_YEAR MAX_YEAR ABBREVIATION
0 00 1610612737 1949 2015 ATL
1 00 1610612738 1946 2015 BOS
2 00 1610612739 1970 2015 CLE
3 00 1610612740 2002 2015 NOP
4 00 1610612741 1966 2015 CHI
5 00 1610612742 1980 2015 DAL
6 00 1610612743 1976 2015 DEN
7 00 1610612744 1946 2015 GSW
8 00 1610612745 1967 2015 HOU
9 00 1610612746 1970 2015 LAC
10 00 1610612747 1948 2015 LAL
11 00 1610612748 1988 2015 MIA
12 00 1610612749 1968 2015 MIL
13 00 1610612750 1989 2015 MIN
14 00 1610612751 1976 2015 BKN
15 00 1610612752 1946 2015 NYK
16 00 1610612753 1989 2015 ORL
17 00 1610612754 1976 2015 IND
18 00 1610612755 1949 2015 PHI
19 00 1610612756 1968 2015 PHX
20 00 1610612757 1970 2015 POR
21 00 1610612758 1948 2015 SAC
22 00 1610612759 1976 2015 SAS
23 00 1610612760 1967 2015 OKC
24 00 1610612761 1995 2015 TOR
25 00 1610612763 1995 2015 MEM
26 00 1610612764 1961 2015 WAS
27 00 1610612765 1948 2015 DET
28 00 1610612766 1988 2015 CHA
29 00 1610612762 1974 2015 UTA
30 00 1610610029 1948 1948 None
31 00 1610610025 1946 1949 None
32 00 1610610034 1946 1949 None
33 00 1610610036 1946 1950 None
34 00 1610610024 1947 1954 None
35 00 1610610027 1949 1949 None
36 00 1610610030 1949 1952 None
37 00 1610610033 1949 1949 None
38 00 1610610037 1949 1949 None
39 00 1610610031 1946 1946 None
40 00 1610610023 1949 1949 None
41 00 1610610028 1946 1946 None
42 00 1610610026 1946 1946 None
43 00 1610610032 1946 1948 None
44 00 1610610035 1946 1946 None

In [7]:
cle_id = '1610612739'
cle_summary = team.TeamSummary(team_id=cle_id, season = '2015-16')
#cle_summary.info()
cle_summary.season_ranks()


Out[7]:
LEAGUE_ID SEASON_ID TEAM_ID PTS_RANK PTS_PG REB_RANK REB_PG AST_RANK AST_PG OPP_PTS_RANK OPP_PTS_PG
0 00 22015 1610612739 8 104.3 9 44.5 13 22.7 4 98.3

In [8]:
#General dashboard
cle_db = team._TeamDashboard(team_id = cle_id, )


---------------------------------------------------------------------------
HTTPError                                 Traceback (most recent call last)
<ipython-input-8-c2cc7cbcf5bd> in <module>()
      1 #General dashboard
----> 2 cle_db = team._TeamDashboard(team_id = cle_id)

//anaconda/lib/python2.7/site-packages/nba_py/team.pyc in __init__(self, team_id, measure_type, per_mode, plus_minus, pace_adjust, rank, league_id, season, season_type, po_round, outcome, location, month, season_segment, date_from, date_to, opponent_team_id, vs_conference, vs_division, game_segment, period, shot_clock_range, last_n_games)
    103                                       'Period': period,
    104                                       'ShotClockRange': shot_clock_range,
--> 105                                       'LastNGames': last_n_games})
    106 
    107     def overall(self):

//anaconda/lib/python2.7/site-packages/nba_py/__init__.pyc in _get_json(endpoint, params)
     72                headers=HEADERS)
     73     # print _get.url
---> 74     _get.raise_for_status()
     75     return _get.json()
     76 

//anaconda/lib/python2.7/site-packages/requests/models.pyc in raise_for_status(self)
    838 
    839         if http_error_msg:
--> 840             raise HTTPError(http_error_msg, response=self)
    841 
    842     def close(self):

HTTPError: 404 Client Error: Not Found for url: http://stats.nba.com/stats/?PlusMinus=N&TeamID=1610612739&Location=&Month=0&SeasonType=Regular+Season&Season=2015-16&PaceAdjust=N&DateFrom=&VsConference=&OpponentTeamID=0&DateTo=&GameSegment=&LastNGames=0&VsDivision=&LeagueID=00&Outcome=&MeasureType=Base&PORound=0&PerMode=PerGame&SeasonSegment=&Period=0&Rank=N&ShotClockRange=

In [12]:
#Splits
cle_splits = team.TeamGeneralSplits(team_id=cle_id)
cle_splits.days_rest()


Out[12]:
GROUP_SET GROUP_VALUE TEAM_DAYS_REST_RANGE GP W L W_PCT MIN FGM FGA ... TOV STL BLK BLKA PF PFD PTS PLUS_MINUS CFID CFPARAMS
0 Days Rest 0 Days Rest 0 Days Rest 19 11 8 0.579 48.8 37.6 84.5 ... 14.3 6.6 4.0 4.7 21.1 19.5 100.2 1.1 152 0 Days Rest
1 Days Rest 1 Days Rest 1 Days Rest 44 34 10 0.773 48.3 39.7 84.3 ... 13.6 6.8 3.7 4.3 20.0 20.6 107.2 7.7 152 1 Days Rest
2 Days Rest 2 Days Rest 2 Days Rest 14 8 6 0.571 48.4 37.1 81.4 ... 13.6 6.7 3.5 3.9 20.9 22.3 102.4 4.5 152 2 Days Rest
3 Days Rest 3 Days Rest 3 Days Rest 3 3 0 1.000 48.0 37.3 83.3 ... 10.7 6.7 4.3 4.3 17.7 19.7 100.3 20.7 152 3 Days Rest
4 Days Rest 6+ Days Rest 6+ Days Rest 2 1 1 0.500 48.0 40.0 92.5 ... 11.0 6.5 7.5 7.0 21.5 20.5 100.5 4.5 152 6+ Days Rest

5 rows × 31 columns


In [14]:
#last game splits
cle_g_splits = team.TeamLastNGamesSplits(team_id = cle_id)
cle_g_splits.last5()


Out[14]:
GROUP_SET GROUP_VALUE GP W L W_PCT MIN FGM FGA FG_PCT ... TOV STL BLK BLKA PF PFD PTS PLUS_MINUS CFID CFPARAMS
0 Last 5 Games Last 5 Games 5 2 3 0.4 49.0 39.6 82.4 0.481 ... 13.4 5.8 5.4 5.0 17.6 18.6 107.8 5.0 162 Last 5 Games

1 rows × 30 columns


In [17]:
#game logs
cle_logs = team.TeamGameLogs(team_id = cle_id)
cle_logs.info()


Out[17]:
Team_ID Game_ID GAME_DATE MATCHUP WL MIN FGM FGA FG_PCT FG3M ... FT_PCT OREB DREB REB AST STL BLK TOV PF PTS
0 1610612739 0021501220 APR 13, 2016 CLE vs. DET L 265 46 97 0.474 7 ... 0.733 8 35 43 21 4 7 10 23 110
1 1610612739 0021501203 APR 11, 2016 CLE vs. ATL W 240 40 83 0.482 11 ... 0.900 9 38 47 17 9 4 15 14 109
2 1610612739 0021501191 APR 09, 2016 CLE @ CHI L 240 36 83 0.434 19 ... 0.611 12 30 42 24 5 5 15 18 102
3 1610612739 0021501165 APR 06, 2016 CLE @ IND L 240 35 74 0.473 8 ... 0.912 7 26 33 15 7 3 10 19 109
4 1610612739 0021501159 APR 05, 2016 CLE @ MIL W 240 41 75 0.547 18 ... 0.900 2 39 41 30 4 8 16 14 109
5 1610612739 0021501144 APR 03, 2016 CLE vs. CHA W 240 45 83 0.542 16 ... 0.462 15 31 46 34 7 1 17 19 112
6 1610612739 0021501131 APR 01, 2016 CLE @ ATL W 265 39 98 0.398 12 ... 0.645 11 46 57 27 9 6 12 23 110
7 1610612739 0021501122 MAR 31, 2016 CLE vs. BKN W 240 38 87 0.437 12 ... 0.792 9 41 50 29 10 7 17 17 107
8 1610612739 0021501111 MAR 29, 2016 CLE vs. HOU L 240 31 86 0.360 14 ... 0.857 10 28 38 21 5 5 11 31 100
9 1610612739 0021501086 MAR 26, 2016 CLE @ NYK W 240 37 83 0.446 14 ... 0.760 15 38 53 21 6 5 9 23 107
10 1610612739 0021501069 MAR 24, 2016 CLE @ BKN L 240 39 89 0.438 10 ... 0.778 11 34 45 22 3 2 14 20 95
11 1610612739 0021501059 MAR 23, 2016 CLE vs. MIL W 240 40 83 0.482 10 ... 0.852 17 25 42 29 6 8 12 17 113
12 1610612739 0021501044 MAR 21, 2016 CLE vs. DEN W 240 48 86 0.558 15 ... 0.765 8 35 43 38 10 4 12 19 124
13 1610612739 0021501033 MAR 19, 2016 CLE @ MIA L 240 40 76 0.526 10 ... 0.846 3 23 26 19 6 3 14 22 101
14 1610612739 0021501020 MAR 18, 2016 CLE @ ORL W 240 38 76 0.500 13 ... 0.741 9 32 41 23 7 4 19 21 109
15 1610612739 0021501005 MAR 16, 2016 CLE vs. DAL W 240 39 88 0.443 10 ... 0.846 13 35 48 21 9 4 16 19 99
16 1610612739 0021500994 MAR 14, 2016 CLE @ UTA L 240 35 88 0.398 10 ... 0.625 13 26 39 18 6 3 8 16 85
17 1610612739 0021500983 MAR 13, 2016 CLE @ LAC W 240 41 84 0.488 18 ... 0.700 9 40 49 23 3 4 8 19 114
18 1610612739 0021500962 MAR 10, 2016 CLE @ LAL W 240 45 85 0.529 16 ... 0.700 9 29 38 22 4 6 8 20 120
19 1610612739 0021500957 MAR 09, 2016 CLE @ SAC W 240 39 90 0.433 13 ... 0.829 15 36 51 17 5 1 13 21 120
20 1610612739 0021500938 MAR 07, 2016 CLE vs. MEM L 240 36 80 0.450 7 ... 0.828 13 36 49 23 9 7 25 22 103
21 1610612739 0021500922 MAR 05, 2016 CLE vs. BOS W 240 42 82 0.512 10 ... 0.765 15 32 47 27 8 4 15 21 120
22 1610612739 0021500917 MAR 04, 2016 CLE vs. WAS W 240 42 90 0.467 12 ... 0.750 8 39 47 24 9 5 9 19 108
23 1610612739 0021500884 FEB 29, 2016 CLE vs. IND W 240 35 83 0.422 9 ... 0.840 9 31 40 22 4 2 11 15 100
24 1610612739 0021500877 FEB 28, 2016 CLE @ WAS L 240 32 80 0.400 9 ... 0.867 6 33 39 20 6 2 14 26 99
25 1610612739 0021500864 FEB 26, 2016 CLE @ TOR L 240 35 74 0.473 12 ... 0.714 10 29 39 21 4 0 14 26 97
26 1610612739 0021500845 FEB 24, 2016 CLE vs. CHA W 240 45 91 0.495 13 ... 0.647 12 35 47 26 11 1 9 20 114
27 1610612739 0021500833 FEB 22, 2016 CLE vs. DET L 240 34 79 0.430 8 ... 0.923 5 35 40 19 8 2 17 21 88
28 1610612739 0021500824 FEB 21, 2016 CLE @ OKC W 240 41 80 0.513 10 ... 0.852 13 36 49 25 4 1 12 21 115
29 1610612739 0021500803 FEB 18, 2016 CLE vs. CHI W 240 42 91 0.462 7 ... 0.882 11 41 52 21 8 8 10 22 106
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
52 1610612739 0021500473 DEC 29, 2015 CLE @ DEN W 240 38 86 0.442 4 ... 0.591 9 35 44 17 12 3 12 16 93
53 1610612739 0021500466 DEC 28, 2015 CLE @ PHX W 240 33 71 0.465 17 ... 0.720 10 27 37 21 8 8 17 18 101
54 1610612739 0021500453 DEC 26, 2015 CLE @ POR L 240 28 77 0.364 11 ... 0.600 9 33 42 21 4 2 17 20 76
55 1610612739 0021500438 DEC 25, 2015 CLE @ GSW L 240 30 95 0.316 5 ... 0.720 17 38 55 12 6 4 11 22 83
56 1610612739 0021500424 DEC 23, 2015 CLE vs. NYK W 240 32 83 0.386 5 ... 0.880 14 34 48 23 6 4 7 15 91
57 1610612739 0021500405 DEC 20, 2015 CLE vs. PHI W 240 40 85 0.471 11 ... 0.810 6 34 40 25 11 6 10 19 108
58 1610612739 0021500384 DEC 17, 2015 CLE vs. OKC W 240 41 88 0.466 12 ... 0.769 16 26 42 29 6 1 16 22 104
59 1610612739 0021500367 DEC 15, 2015 CLE @ BOS W 240 36 78 0.462 8 ... 0.900 6 40 46 17 5 7 14 17 89
60 1610612739 0021500334 DEC 11, 2015 CLE @ ORL W 240 41 72 0.569 11 ... 0.667 9 36 45 28 12 0 18 19 111
61 1610612739 0021500313 DEC 08, 2015 CLE vs. POR W 240 40 79 0.506 9 ... 0.800 6 24 30 18 10 4 8 18 105
62 1610612739 0021500291 DEC 05, 2015 CLE @ MIA L 240 31 85 0.365 6 ... 0.667 11 25 36 14 8 1 14 26 84
63 1610612739 0021500288 DEC 04, 2015 CLE @ NOP L 265 39 89 0.438 10 ... 0.833 12 31 43 18 8 1 14 26 108
64 1610612739 0021500262 DEC 01, 2015 CLE vs. WAS L 240 28 83 0.337 9 ... 0.870 10 37 47 15 8 3 18 18 85
65 1610612739 0021500240 NOV 28, 2015 CLE vs. BKN W 240 35 87 0.402 9 ... 0.647 12 37 49 20 9 11 19 19 90
66 1610612739 0021500227 NOV 27, 2015 CLE @ CHA W 240 34 81 0.420 8 ... 0.760 12 38 50 17 3 2 16 22 95
67 1610612739 0021500219 NOV 25, 2015 CLE @ TOR L 240 36 82 0.439 14 ... 0.813 9 33 42 22 4 2 10 20 99
68 1610612739 0021500203 NOV 23, 2015 CLE vs. ORL W 240 43 81 0.531 18 ... 0.591 8 33 41 34 5 3 10 15 117
69 1610612739 0021500191 NOV 21, 2015 CLE vs. ATL W 240 41 85 0.482 11 ... 0.842 11 40 51 27 4 8 14 22 109
70 1610612739 0021500176 NOV 19, 2015 CLE vs. MIL W 240 40 71 0.563 11 ... 0.800 13 30 43 29 3 2 17 24 115
71 1610612739 0021500160 NOV 17, 2015 CLE @ DET L 240 38 80 0.475 11 ... 0.600 3 37 40 21 8 2 14 25 99
72 1610612739 0021500141 NOV 14, 2015 CLE @ MIL L 290 37 91 0.407 14 ... 0.630 14 40 54 21 6 8 20 24 105
73 1610612739 0021500130 NOV 13, 2015 CLE @ NYK W 240 33 78 0.423 6 ... 0.581 12 37 49 12 6 1 12 19 90
74 1610612739 0021500106 NOV 10, 2015 CLE vs. UTA W 240 37 74 0.500 11 ... 0.767 11 24 35 24 9 6 16 21 118
75 1610612739 0021500094 NOV 08, 2015 CLE vs. IND W 240 38 83 0.458 8 ... 0.680 11 37 48 25 5 4 10 20 101
76 1610612739 0021500078 NOV 06, 2015 CLE vs. PHI W 240 45 88 0.511 10 ... 0.667 11 34 45 29 9 0 17 20 108
77 1610612739 0021500063 NOV 04, 2015 CLE vs. NYK W 240 33 83 0.398 7 ... 0.719 9 39 48 21 5 2 11 12 96
78 1610612739 0021500046 NOV 02, 2015 CLE @ PHI W 240 42 81 0.519 8 ... 0.750 7 36 43 28 5 9 16 19 107
79 1610612739 0021500021 OCT 30, 2015 CLE vs. MIA W 240 39 86 0.453 6 ... 0.857 14 35 49 25 4 4 11 19 102
80 1610612739 0021500011 OCT 28, 2015 CLE @ MEM W 240 41 84 0.488 13 ... 0.647 12 42 54 29 7 2 19 25 106
81 1610612739 0021500002 OCT 27, 2015 CLE @ CHI L 240 38 94 0.404 9 ... 0.588 11 39 50 26 5 7 10 21 95

82 rows × 24 columns


In [2]:
## Start of code that gets all all gamelogs for all teams within a season
team_list = team.TeamList().info()
team_list = team_list[team_list['MAX_YEAR']=='2015'].reset_index()
team_list


Out[2]:
index LEAGUE_ID TEAM_ID MIN_YEAR MAX_YEAR ABBREVIATION
0 0 00 1610612737 1949 2015 ATL
1 1 00 1610612738 1946 2015 BOS
2 2 00 1610612739 1970 2015 CLE
3 3 00 1610612740 2002 2015 NOP
4 4 00 1610612741 1966 2015 CHI
5 5 00 1610612742 1980 2015 DAL
6 6 00 1610612743 1976 2015 DEN
7 7 00 1610612744 1946 2015 GSW
8 8 00 1610612745 1967 2015 HOU
9 9 00 1610612746 1970 2015 LAC
10 10 00 1610612747 1948 2015 LAL
11 11 00 1610612748 1988 2015 MIA
12 12 00 1610612749 1968 2015 MIL
13 13 00 1610612750 1989 2015 MIN
14 14 00 1610612751 1976 2015 BKN
15 15 00 1610612752 1946 2015 NYK
16 16 00 1610612753 1989 2015 ORL
17 17 00 1610612754 1976 2015 IND
18 18 00 1610612755 1949 2015 PHI
19 19 00 1610612756 1968 2015 PHX
20 20 00 1610612757 1970 2015 POR
21 21 00 1610612758 1948 2015 SAC
22 22 00 1610612759 1976 2015 SAS
23 23 00 1610612760 1967 2015 OKC
24 24 00 1610612761 1995 2015 TOR
25 25 00 1610612763 1995 2015 MEM
26 26 00 1610612764 1961 2015 WAS
27 27 00 1610612765 1948 2015 DET
28 28 00 1610612766 1988 2015 CHA
29 29 00 1610612762 1974 2015 UTA

In [8]:
df = pd.DataFrame()
for index, tm in team_list.iterrows():
    log = team.TeamGameLogs(team_id=tm['TEAM_ID'])
    log_df = log.info().set_index('MATCHUP')
    df=df.append(log.info())
df = df.reset_index(drop=True)
df


Out[8]:
Team_ID Game_ID GAME_DATE MATCHUP WL MIN FGM FGA FG_PCT FG3M ... FT_PCT OREB DREB REB AST STL BLK TOV PF PTS
0 1610612737 0021501221 APR 13, 2016 ATL @ WAS L 240 32 81 0.395 11 ... 0.742 9 38 47 22 13 5 22 21 98
1 1610612737 0021501203 APR 11, 2016 ATL @ CLE L 240 39 87 0.448 8 ... 0.533 10 32 42 23 8 6 15 18 94
2 1610612737 0021501188 APR 09, 2016 ATL vs. BOS W 240 46 88 0.523 17 ... 0.818 5 39 44 31 10 10 17 22 118
3 1610612737 0021501173 APR 07, 2016 ATL vs. TOR W 240 33 76 0.434 12 ... 0.810 5 36 41 23 4 12 13 19 95
4 1610612737 0021501157 APR 05, 2016 ATL vs. PHX W 240 39 95 0.411 11 ... 0.737 13 37 50 26 16 3 16 21 103
5 1610612737 0021501131 APR 01, 2016 ATL vs. CLE L 265 38 95 0.400 9 ... 0.885 5 43 48 25 5 8 15 27 108
6 1610612737 0021501113 MAR 30, 2016 ATL @ TOR L 240 37 83 0.446 14 ... 0.692 11 33 44 24 3 7 18 19 97
7 1610612737 0021501099 MAR 28, 2016 ATL @ CHI W 240 36 85 0.424 5 ... 0.893 7 41 48 22 4 13 8 13 102
8 1610612737 0021501085 MAR 26, 2016 ATL @ DET W 240 43 95 0.453 13 ... 0.929 5 34 39 34 6 7 4 21 112
9 1610612737 0021501076 MAR 25, 2016 ATL vs. MIL W 240 41 97 0.423 5 ... 0.824 17 28 45 26 10 6 11 21 101
10 1610612737 0021501056 MAR 23, 2016 ATL @ WAS W 240 45 84 0.536 17 ... 0.682 7 34 41 32 10 5 16 17 122
11 1610612737 0021501048 MAR 21, 2016 ATL vs. WAS L 240 38 78 0.487 13 ... 0.765 2 31 33 23 5 6 14 15 102
12 1610612737 0021501029 MAR 19, 2016 ATL vs. HOU W 240 44 88 0.500 14 ... 0.583 9 31 40 32 12 6 16 20 109
13 1610612737 0021501015 MAR 17, 2016 ATL vs. DEN W 240 40 80 0.500 12 ... 0.857 7 33 40 32 5 8 12 16 116
14 1610612737 0021501007 MAR 16, 2016 ATL @ DET W 240 39 89 0.438 12 ... 0.824 8 38 46 25 10 3 12 26 118
15 1610612737 0021500984 MAR 13, 2016 ATL vs. IND W 240 40 85 0.471 15 ... 0.900 9 41 50 27 11 6 15 13 104
16 1610612737 0021500974 MAR 12, 2016 ATL vs. MEM W 240 36 84 0.429 11 ... 0.706 8 39 47 27 9 12 11 14 95
17 1610612737 0021500959 MAR 10, 2016 ATL @ TOR L 240 35 82 0.427 7 ... 0.704 6 27 33 17 8 5 11 24 96
18 1610612737 0021500947 MAR 08, 2016 ATL @ UTA W 240 38 80 0.475 8 ... 0.500 4 37 41 15 9 4 16 19 91
19 1610612737 0021500929 MAR 05, 2016 ATL @ LAC W 240 40 89 0.449 10 ... 0.850 10 43 53 26 9 3 18 26 107
20 1610612737 0021500921 MAR 04, 2016 ATL @ LAL W 240 37 68 0.544 13 ... 0.731 3 36 39 31 6 8 10 18 106
21 1610612737 0021500895 MAR 01, 2016 ATL @ GSW L 265 37 80 0.463 12 ... 0.792 7 35 42 25 9 5 17 17 105
22 1610612737 0021500878 FEB 28, 2016 ATL vs. CHA W 240 38 77 0.494 8 ... 0.600 6 42 48 29 4 5 15 19 87
23 1610612737 0021500865 FEB 26, 2016 ATL vs. CHI W 240 37 89 0.416 7 ... 0.917 13 35 48 28 14 11 11 21 103
24 1610612737 0021500836 FEB 22, 2016 ATL vs. GSW L 240 36 86 0.419 10 ... 0.625 8 39 47 23 7 7 17 17 92
25 1610612737 0021500819 FEB 20, 2016 ATL vs. MIL L 290 44 106 0.415 9 ... 0.667 10 39 49 31 11 8 16 27 109
26 1610612737 0021500808 FEB 19, 2016 ATL vs. MIA L 240 41 87 0.471 16 ... 1.000 8 34 42 27 7 4 21 23 111
27 1610612737 0021500796 FEB 10, 2016 ATL @ CHI W 240 43 90 0.478 13 ... 0.933 11 35 46 25 16 7 12 14 113
28 1610612737 0021500780 FEB 08, 2016 ATL vs. ORL L 265 43 92 0.467 12 ... 0.600 8 39 47 31 9 4 14 20 110
29 1610612737 0021500771 FEB 07, 2016 ATL @ ORL L 240 35 91 0.385 13 ... 0.733 18 32 50 22 7 7 16 13 94
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2430 1610612762 0021500479 DEC 30, 2015 UTA @ MIN L 240 28 80 0.350 10 ... 0.700 15 29 44 15 8 8 19 24 80
2431 1610612762 0021500467 DEC 28, 2015 UTA vs. PHI W 240 28 84 0.333 7 ... 0.889 15 38 53 13 11 9 15 18 95
2432 1610612762 0021500452 DEC 26, 2015 UTA vs. LAC L 240 36 74 0.486 10 ... 0.815 8 28 36 18 7 4 16 22 104
2433 1610612762 0021500434 DEC 23, 2015 UTA @ GSW L 240 33 80 0.413 7 ... 0.857 12 28 40 14 9 3 19 18 85
2434 1610612762 0021500417 DEC 21, 2015 UTA vs. PHX W 240 36 79 0.456 9 ... 0.784 11 36 47 16 8 6 10 16 110
2435 1610612762 0021500395 DEC 18, 2015 UTA vs. DEN W 240 34 73 0.466 10 ... 0.760 5 34 39 15 8 1 14 19 97
2436 1610612762 0021500380 DEC 16, 2015 UTA vs. NOP L 240 32 67 0.478 7 ... 0.793 5 29 34 17 4 4 12 20 94
2437 1610612762 0021500364 DEC 14, 2015 UTA @ SAS L 240 32 79 0.405 3 ... 0.824 7 25 32 18 8 3 11 23 81
2438 1610612762 0021500356 DEC 13, 2015 UTA @ OKC L 265 39 94 0.415 8 ... 0.600 16 28 44 14 6 2 11 24 98
2439 1610612762 0021500341 DEC 11, 2015 UTA vs. OKC L 240 33 78 0.423 8 ... 0.667 11 28 39 17 7 4 11 16 90
2440 1610612762 0021500327 DEC 09, 2015 UTA vs. NYK W 240 39 80 0.488 9 ... 0.826 9 42 51 26 6 2 14 26 106
2441 1610612762 0021500318 DEC 08, 2015 UTA @ SAC L 240 38 92 0.413 15 ... 0.682 19 25 44 23 7 0 12 22 106
2442 1610612762 0021500297 DEC 05, 2015 UTA vs. IND W 265 43 92 0.467 8 ... 0.757 19 35 54 21 7 3 15 30 122
2443 1610612762 0021500279 DEC 03, 2015 UTA vs. ORL L 240 31 72 0.431 14 ... 0.750 5 34 39 18 4 8 19 16 94
2444 1610612762 0021500259 NOV 30, 2015 UTA vs. GSW L 240 40 89 0.449 6 ... 0.773 10 25 35 18 9 2 8 16 103
2445 1610612762 0021500243 NOV 28, 2015 UTA vs. NOP W 240 38 82 0.463 9 ... 0.762 12 37 49 18 11 9 15 25 101
2446 1610612762 0021500226 NOV 25, 2015 UTA @ LAC W 240 39 77 0.506 6 ... 0.720 11 28 39 19 12 4 16 20 102
2447 1610612762 0021500208 NOV 23, 2015 UTA vs. OKC L 240 28 73 0.384 5 ... 0.700 13 28 41 15 11 3 21 18 89
2448 1610612762 0021500184 NOV 20, 2015 UTA @ DAL L 240 35 80 0.438 6 ... 0.810 18 30 48 14 4 2 17 24 93
2449 1610612762 0021500173 NOV 18, 2015 UTA vs. TOR W 240 35 72 0.486 7 ... 0.727 7 34 41 15 9 5 17 20 93
2450 1610612762 0021500148 NOV 15, 2015 UTA @ ATL W 240 39 76 0.513 7 ... 0.706 10 30 40 21 7 7 17 15 97
2451 1610612762 0021500128 NOV 13, 2015 UTA @ ORL L 240 34 87 0.391 8 ... 0.739 12 29 41 24 14 6 17 24 93
2452 1610612762 0021500124 NOV 12, 2015 UTA @ MIA L 240 34 89 0.382 4 ... 0.760 11 31 42 13 10 9 10 23 91
2453 1610612762 0021500106 NOV 10, 2015 UTA @ CLE L 240 40 82 0.488 10 ... 0.857 13 24 37 30 11 0 16 35 114
2454 1610612762 0021500091 NOV 07, 2015 UTA vs. MEM W 240 31 74 0.419 12 ... 0.833 9 40 49 18 7 10 21 20 89
2455 1610612762 0021500073 NOV 05, 2015 UTA @ DEN W 240 37 85 0.435 11 ... 0.647 12 31 43 23 6 6 10 26 96
2456 1610612762 0021500068 NOV 04, 2015 UTA vs. POR L 240 33 88 0.375 5 ... 0.636 16 24 40 9 12 8 9 22 92
2457 1610612762 0021500033 OCT 31, 2015 UTA @ IND W 240 39 88 0.443 6 ... 0.722 15 32 47 15 13 4 17 24 97
2458 1610612762 0021500023 OCT 30, 2015 UTA @ PHI W 240 36 88 0.409 7 ... 0.800 13 38 51 19 10 9 7 22 99
2459 1610612762 0021500007 OCT 28, 2015 UTA @ DET L 240 35 75 0.467 2 ... 0.714 4 34 38 15 4 5 12 25 87

2460 rows × 24 columns


In [9]:
for index, game in df.iterrows():
    splits = game['MATCHUP'].split(' ')
    if splits[1] == '@':
        df.set_value(index, 'Away Team', splits[0])
        df.set_value(index, 'Home Team', splits[2])
    else:
        df.set_value(index, 'Home Team', splits[0])
        df.set_value(index, 'Away Team', splits[2])
    if splits[0] == df.ix[index, 'Home Team']:
        df.set_value(index, 'Home Stats', 1)
    else:
        df.set_value(index, 'Home Stats', 0)
df


Out[9]:
Team_ID Game_ID GAME_DATE MATCHUP WL MIN FGM FGA FG_PCT FG3M ... REB AST STL BLK TOV PF PTS Away Team Home Team Home Stats
0 1610612737 0021501221 APR 13, 2016 ATL @ WAS L 240 32 81 0.395 11 ... 47 22 13 5 22 21 98 ATL WAS 0.0
1 1610612737 0021501203 APR 11, 2016 ATL @ CLE L 240 39 87 0.448 8 ... 42 23 8 6 15 18 94 ATL CLE 0.0
2 1610612737 0021501188 APR 09, 2016 ATL vs. BOS W 240 46 88 0.523 17 ... 44 31 10 10 17 22 118 BOS ATL 1.0
3 1610612737 0021501173 APR 07, 2016 ATL vs. TOR W 240 33 76 0.434 12 ... 41 23 4 12 13 19 95 TOR ATL 1.0
4 1610612737 0021501157 APR 05, 2016 ATL vs. PHX W 240 39 95 0.411 11 ... 50 26 16 3 16 21 103 PHX ATL 1.0
5 1610612737 0021501131 APR 01, 2016 ATL vs. CLE L 265 38 95 0.400 9 ... 48 25 5 8 15 27 108 CLE ATL 1.0
6 1610612737 0021501113 MAR 30, 2016 ATL @ TOR L 240 37 83 0.446 14 ... 44 24 3 7 18 19 97 ATL TOR 0.0
7 1610612737 0021501099 MAR 28, 2016 ATL @ CHI W 240 36 85 0.424 5 ... 48 22 4 13 8 13 102 ATL CHI 0.0
8 1610612737 0021501085 MAR 26, 2016 ATL @ DET W 240 43 95 0.453 13 ... 39 34 6 7 4 21 112 ATL DET 0.0
9 1610612737 0021501076 MAR 25, 2016 ATL vs. MIL W 240 41 97 0.423 5 ... 45 26 10 6 11 21 101 MIL ATL 1.0
10 1610612737 0021501056 MAR 23, 2016 ATL @ WAS W 240 45 84 0.536 17 ... 41 32 10 5 16 17 122 ATL WAS 0.0
11 1610612737 0021501048 MAR 21, 2016 ATL vs. WAS L 240 38 78 0.487 13 ... 33 23 5 6 14 15 102 WAS ATL 1.0
12 1610612737 0021501029 MAR 19, 2016 ATL vs. HOU W 240 44 88 0.500 14 ... 40 32 12 6 16 20 109 HOU ATL 1.0
13 1610612737 0021501015 MAR 17, 2016 ATL vs. DEN W 240 40 80 0.500 12 ... 40 32 5 8 12 16 116 DEN ATL 1.0
14 1610612737 0021501007 MAR 16, 2016 ATL @ DET W 240 39 89 0.438 12 ... 46 25 10 3 12 26 118 ATL DET 0.0
15 1610612737 0021500984 MAR 13, 2016 ATL vs. IND W 240 40 85 0.471 15 ... 50 27 11 6 15 13 104 IND ATL 1.0
16 1610612737 0021500974 MAR 12, 2016 ATL vs. MEM W 240 36 84 0.429 11 ... 47 27 9 12 11 14 95 MEM ATL 1.0
17 1610612737 0021500959 MAR 10, 2016 ATL @ TOR L 240 35 82 0.427 7 ... 33 17 8 5 11 24 96 ATL TOR 0.0
18 1610612737 0021500947 MAR 08, 2016 ATL @ UTA W 240 38 80 0.475 8 ... 41 15 9 4 16 19 91 ATL UTA 0.0
19 1610612737 0021500929 MAR 05, 2016 ATL @ LAC W 240 40 89 0.449 10 ... 53 26 9 3 18 26 107 ATL LAC 0.0
20 1610612737 0021500921 MAR 04, 2016 ATL @ LAL W 240 37 68 0.544 13 ... 39 31 6 8 10 18 106 ATL LAL 0.0
21 1610612737 0021500895 MAR 01, 2016 ATL @ GSW L 265 37 80 0.463 12 ... 42 25 9 5 17 17 105 ATL GSW 0.0
22 1610612737 0021500878 FEB 28, 2016 ATL vs. CHA W 240 38 77 0.494 8 ... 48 29 4 5 15 19 87 CHA ATL 1.0
23 1610612737 0021500865 FEB 26, 2016 ATL vs. CHI W 240 37 89 0.416 7 ... 48 28 14 11 11 21 103 CHI ATL 1.0
24 1610612737 0021500836 FEB 22, 2016 ATL vs. GSW L 240 36 86 0.419 10 ... 47 23 7 7 17 17 92 GSW ATL 1.0
25 1610612737 0021500819 FEB 20, 2016 ATL vs. MIL L 290 44 106 0.415 9 ... 49 31 11 8 16 27 109 MIL ATL 1.0
26 1610612737 0021500808 FEB 19, 2016 ATL vs. MIA L 240 41 87 0.471 16 ... 42 27 7 4 21 23 111 MIA ATL 1.0
27 1610612737 0021500796 FEB 10, 2016 ATL @ CHI W 240 43 90 0.478 13 ... 46 25 16 7 12 14 113 ATL CHI 0.0
28 1610612737 0021500780 FEB 08, 2016 ATL vs. ORL L 265 43 92 0.467 12 ... 47 31 9 4 14 20 110 ORL ATL 1.0
29 1610612737 0021500771 FEB 07, 2016 ATL @ ORL L 240 35 91 0.385 13 ... 50 22 7 7 16 13 94 ATL ORL 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2430 1610612762 0021500479 DEC 30, 2015 UTA @ MIN L 240 28 80 0.350 10 ... 44 15 8 8 19 24 80 UTA MIN 0.0
2431 1610612762 0021500467 DEC 28, 2015 UTA vs. PHI W 240 28 84 0.333 7 ... 53 13 11 9 15 18 95 PHI UTA 1.0
2432 1610612762 0021500452 DEC 26, 2015 UTA vs. LAC L 240 36 74 0.486 10 ... 36 18 7 4 16 22 104 LAC UTA 1.0
2433 1610612762 0021500434 DEC 23, 2015 UTA @ GSW L 240 33 80 0.413 7 ... 40 14 9 3 19 18 85 UTA GSW 0.0
2434 1610612762 0021500417 DEC 21, 2015 UTA vs. PHX W 240 36 79 0.456 9 ... 47 16 8 6 10 16 110 PHX UTA 1.0
2435 1610612762 0021500395 DEC 18, 2015 UTA vs. DEN W 240 34 73 0.466 10 ... 39 15 8 1 14 19 97 DEN UTA 1.0
2436 1610612762 0021500380 DEC 16, 2015 UTA vs. NOP L 240 32 67 0.478 7 ... 34 17 4 4 12 20 94 NOP UTA 1.0
2437 1610612762 0021500364 DEC 14, 2015 UTA @ SAS L 240 32 79 0.405 3 ... 32 18 8 3 11 23 81 UTA SAS 0.0
2438 1610612762 0021500356 DEC 13, 2015 UTA @ OKC L 265 39 94 0.415 8 ... 44 14 6 2 11 24 98 UTA OKC 0.0
2439 1610612762 0021500341 DEC 11, 2015 UTA vs. OKC L 240 33 78 0.423 8 ... 39 17 7 4 11 16 90 OKC UTA 1.0
2440 1610612762 0021500327 DEC 09, 2015 UTA vs. NYK W 240 39 80 0.488 9 ... 51 26 6 2 14 26 106 NYK UTA 1.0
2441 1610612762 0021500318 DEC 08, 2015 UTA @ SAC L 240 38 92 0.413 15 ... 44 23 7 0 12 22 106 UTA SAC 0.0
2442 1610612762 0021500297 DEC 05, 2015 UTA vs. IND W 265 43 92 0.467 8 ... 54 21 7 3 15 30 122 IND UTA 1.0
2443 1610612762 0021500279 DEC 03, 2015 UTA vs. ORL L 240 31 72 0.431 14 ... 39 18 4 8 19 16 94 ORL UTA 1.0
2444 1610612762 0021500259 NOV 30, 2015 UTA vs. GSW L 240 40 89 0.449 6 ... 35 18 9 2 8 16 103 GSW UTA 1.0
2445 1610612762 0021500243 NOV 28, 2015 UTA vs. NOP W 240 38 82 0.463 9 ... 49 18 11 9 15 25 101 NOP UTA 1.0
2446 1610612762 0021500226 NOV 25, 2015 UTA @ LAC W 240 39 77 0.506 6 ... 39 19 12 4 16 20 102 UTA LAC 0.0
2447 1610612762 0021500208 NOV 23, 2015 UTA vs. OKC L 240 28 73 0.384 5 ... 41 15 11 3 21 18 89 OKC UTA 1.0
2448 1610612762 0021500184 NOV 20, 2015 UTA @ DAL L 240 35 80 0.438 6 ... 48 14 4 2 17 24 93 UTA DAL 0.0
2449 1610612762 0021500173 NOV 18, 2015 UTA vs. TOR W 240 35 72 0.486 7 ... 41 15 9 5 17 20 93 TOR UTA 1.0
2450 1610612762 0021500148 NOV 15, 2015 UTA @ ATL W 240 39 76 0.513 7 ... 40 21 7 7 17 15 97 UTA ATL 0.0
2451 1610612762 0021500128 NOV 13, 2015 UTA @ ORL L 240 34 87 0.391 8 ... 41 24 14 6 17 24 93 UTA ORL 0.0
2452 1610612762 0021500124 NOV 12, 2015 UTA @ MIA L 240 34 89 0.382 4 ... 42 13 10 9 10 23 91 UTA MIA 0.0
2453 1610612762 0021500106 NOV 10, 2015 UTA @ CLE L 240 40 82 0.488 10 ... 37 30 11 0 16 35 114 UTA CLE 0.0
2454 1610612762 0021500091 NOV 07, 2015 UTA vs. MEM W 240 31 74 0.419 12 ... 49 18 7 10 21 20 89 MEM UTA 1.0
2455 1610612762 0021500073 NOV 05, 2015 UTA @ DEN W 240 37 85 0.435 11 ... 43 23 6 6 10 26 96 UTA DEN 0.0
2456 1610612762 0021500068 NOV 04, 2015 UTA vs. POR L 240 33 88 0.375 5 ... 40 9 12 8 9 22 92 POR UTA 1.0
2457 1610612762 0021500033 OCT 31, 2015 UTA @ IND W 240 39 88 0.443 6 ... 47 15 13 4 17 24 97 UTA IND 0.0
2458 1610612762 0021500023 OCT 30, 2015 UTA @ PHI W 240 36 88 0.409 7 ... 51 19 10 9 7 22 99 UTA PHI 0.0
2459 1610612762 0021500007 OCT 28, 2015 UTA @ DET L 240 35 75 0.467 2 ... 38 15 4 5 12 25 87 UTA DET 0.0

2460 rows × 27 columns


In [10]:
h_df = df[df['Home Stats'] == 1]
len(h_df)


Out[10]:
1230

In [11]:
a_df = df[df['Home Stats'] == 0]
len(a_df)


Out[11]:
1230

In [12]:
full_sched = pd.merge(h_df, a_df, on = 'Game_ID', suffixes = ['_home', '_away']).reset_index(drop=True)
full_sched


Out[12]:
Team_ID_home Game_ID GAME_DATE_home MATCHUP_home WL_home MIN_home FGM_home FGA_home FG_PCT_home FG3M_home ... REB_away AST_away STL_away BLK_away TOV_away PF_away PTS_away Away Team_away Home Team_away Home Stats_away
0 1610612737 0021501188 APR 09, 2016 ATL vs. BOS W 240 46 88 0.523 17 ... 40 26 10 6 15 21 107 BOS ATL 0.0
1 1610612737 0021501173 APR 07, 2016 ATL vs. TOR W 240 33 76 0.434 12 ... 46 16 10 4 11 16 87 TOR ATL 0.0
2 1610612737 0021501157 APR 05, 2016 ATL vs. PHX W 240 39 95 0.411 11 ... 51 19 13 4 24 19 90 PHX ATL 0.0
3 1610612737 0021501131 APR 01, 2016 ATL vs. CLE L 265 38 95 0.400 9 ... 57 27 9 6 12 23 110 CLE ATL 0.0
4 1610612737 0021501076 MAR 25, 2016 ATL vs. MIL W 240 41 97 0.423 5 ... 49 16 4 9 15 16 90 MIL ATL 0.0
5 1610612737 0021501048 MAR 21, 2016 ATL vs. WAS L 240 38 78 0.487 13 ... 44 27 10 3 9 17 117 WAS ATL 0.0
6 1610612737 0021501029 MAR 19, 2016 ATL vs. HOU W 240 44 88 0.500 14 ... 51 15 11 3 17 17 97 HOU ATL 0.0
7 1610612737 0021501015 MAR 17, 2016 ATL vs. DEN W 240 40 80 0.500 12 ... 39 22 6 4 14 22 98 DEN ATL 0.0
8 1610612737 0021500984 MAR 13, 2016 ATL vs. IND W 240 40 85 0.471 15 ... 38 24 9 5 16 14 75 IND ATL 0.0
9 1610612737 0021500974 MAR 12, 2016 ATL vs. MEM W 240 36 84 0.429 11 ... 58 15 10 5 16 14 83 MEM ATL 0.0
10 1610612737 0021500878 FEB 28, 2016 ATL vs. CHA W 240 38 77 0.494 8 ... 41 16 7 4 6 12 76 CHA ATL 0.0
11 1610612737 0021500865 FEB 26, 2016 ATL vs. CHI W 240 37 89 0.416 7 ... 49 19 3 2 20 20 88 CHI ATL 0.0
12 1610612737 0021500836 FEB 22, 2016 ATL vs. GSW L 240 36 86 0.419 10 ... 43 30 14 8 13 17 102 GSW ATL 0.0
13 1610612737 0021500819 FEB 20, 2016 ATL vs. MIL L 290 44 106 0.415 9 ... 65 23 12 10 17 21 117 MIL ATL 0.0
14 1610612737 0021500808 FEB 19, 2016 ATL vs. MIA L 240 41 87 0.471 16 ... 46 27 13 1 14 12 115 MIA ATL 0.0
15 1610612737 0021500780 FEB 08, 2016 ATL vs. ORL L 265 43 92 0.467 12 ... 47 37 11 8 13 22 117 ORL ATL 0.0
16 1610612737 0021500750 FEB 05, 2016 ATL vs. IND W 240 39 76 0.513 10 ... 53 23 6 4 19 18 96 IND ATL 0.0
17 1610612737 0021500723 FEB 01, 2016 ATL vs. DAL W 240 42 80 0.525 14 ... 37 14 5 2 6 18 97 DAL ATL 0.0
18 1610612737 0021500687 JAN 27, 2016 ATL vs. LAC L 240 33 79 0.418 10 ... 46 18 16 5 11 14 85 LAC ATL 0.0
19 1610612737 0021500620 JAN 18, 2016 ATL vs. ORL W 240 41 80 0.513 9 ... 42 21 11 5 13 13 81 ORL ATL 0.0
20 1610612737 0021500602 JAN 16, 2016 ATL vs. BKN W 240 44 79 0.557 8 ... 36 22 5 3 17 17 86 BKN ATL 0.0
21 1610612737 0021500551 JAN 09, 2016 ATL vs. CHI W 240 49 94 0.521 10 ... 46 16 7 6 21 13 105 CHI ATL 0.0
22 1610612737 0021500521 JAN 05, 2016 ATL vs. NYK L 240 37 87 0.425 15 ... 46 20 7 6 9 20 107 NYK ATL 0.0
23 1610612737 0021500442 DEC 26, 2015 ATL vs. NYK W 240 47 88 0.534 8 ... 42 25 6 8 22 15 98 NYK ATL 0.0
24 1610612737 0021500429 DEC 23, 2015 ATL vs. DET W 240 43 89 0.483 6 ... 46 18 7 9 14 20 100 DET ATL 0.0
25 1610612737 0021500413 DEC 21, 2015 ATL vs. POR W 240 37 77 0.481 9 ... 50 24 5 4 18 20 97 POR ATL 0.0
26 1610612737 0021500376 DEC 16, 2015 ATL vs. PHI W 240 48 78 0.615 10 ... 32 20 5 2 22 21 106 PHI ATL 0.0
27 1610612737 0021500360 DEC 14, 2015 ATL vs. MIA L 240 33 84 0.393 8 ... 54 26 6 5 15 16 100 MIA ATL 0.0
28 1610612737 0021500347 DEC 12, 2015 ATL vs. SAS L 240 30 80 0.375 5 ... 49 26 11 2 23 16 103 SAS ATL 0.0
29 1610612737 0021500286 DEC 04, 2015 ATL vs. LAL W 240 37 74 0.500 10 ... 42 19 10 7 16 14 87 LAL ATL 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1200 1610612762 0021500860 FEB 25, 2016 UTA vs. SAS L 240 33 77 0.429 3 ... 43 17 5 5 11 16 96 SAS UTA 0.0
1201 1610612762 0021500843 FEB 23, 2016 UTA vs. HOU W 265 38 74 0.514 10 ... 35 17 15 4 14 28 114 HOU UTA 0.0
1202 1610612762 0021500817 FEB 19, 2016 UTA vs. BOS W 240 37 68 0.544 10 ... 34 18 8 3 7 31 93 BOS UTA 0.0
1203 1610612762 0021500758 FEB 05, 2016 UTA vs. MIL W 240 30 77 0.390 8 ... 41 9 12 7 20 17 81 MIL UTA 0.0
1204 1610612762 0021500743 FEB 03, 2016 UTA vs. DEN W 240 33 74 0.446 5 ... 41 11 12 2 14 19 81 DEN UTA 0.0
1205 1610612762 0021500728 FEB 01, 2016 UTA vs. CHI W 265 38 85 0.447 7 ... 42 19 4 7 14 25 96 CHI UTA 0.0
1206 1610612762 0021500704 JAN 29, 2016 UTA vs. MIN W 240 40 76 0.526 10 ... 38 17 9 2 14 13 90 MIN UTA 0.0
1207 1610612762 0021500690 JAN 27, 2016 UTA vs. CHA W 240 40 81 0.494 12 ... 35 10 6 0 18 15 73 CHA UTA 0.0
1208 1610612762 0021500673 JAN 25, 2016 UTA vs. DET L 240 34 85 0.400 9 ... 42 19 7 1 10 18 95 DET UTA 0.0
1209 1610612762 0021500608 JAN 16, 2016 UTA vs. LAL W 240 41 83 0.494 12 ... 44 16 4 4 14 14 82 LAL UTA 0.0
1210 1610612762 0021500591 JAN 14, 2016 UTA vs. SAC L 240 35 83 0.422 6 ... 54 19 12 2 15 29 103 SAC UTA 0.0
1211 1610612762 0021500555 JAN 09, 2016 UTA vs. MIA W 240 39 71 0.549 9 ... 39 14 7 8 17 16 83 MIA UTA 0.0
1212 1610612762 0021500518 JAN 04, 2016 UTA vs. HOU L 240 30 75 0.400 12 ... 34 17 8 2 16 16 93 HOU UTA 0.0
1213 1610612762 0021500503 JAN 02, 2016 UTA vs. MEM W 265 31 75 0.413 9 ... 40 17 8 4 11 24 87 MEM UTA 0.0
1214 1610612762 0021500489 DEC 31, 2015 UTA vs. POR W 240 43 86 0.500 15 ... 39 19 1 0 10 16 96 POR UTA 0.0
1215 1610612762 0021500467 DEC 28, 2015 UTA vs. PHI W 240 28 84 0.333 7 ... 37 20 8 9 18 27 91 PHI UTA 0.0
1216 1610612762 0021500452 DEC 26, 2015 UTA vs. LAC L 240 36 74 0.486 10 ... 34 24 9 6 12 23 109 LAC UTA 0.0
1217 1610612762 0021500417 DEC 21, 2015 UTA vs. PHX W 240 36 79 0.456 9 ... 40 12 3 0 13 26 89 PHX UTA 0.0
1218 1610612762 0021500395 DEC 18, 2015 UTA vs. DEN W 240 34 73 0.466 10 ... 44 15 10 4 14 20 88 DEN UTA 0.0
1219 1610612762 0021500380 DEC 16, 2015 UTA vs. NOP L 240 32 67 0.478 7 ... 36 14 9 2 10 24 104 NOP UTA 0.0
1220 1610612762 0021500341 DEC 11, 2015 UTA vs. OKC L 240 33 78 0.423 8 ... 45 14 4 2 13 19 94 OKC UTA 0.0
1221 1610612762 0021500327 DEC 09, 2015 UTA vs. NYK W 240 39 80 0.488 9 ... 36 20 10 3 10 24 85 NYK UTA 0.0
1222 1610612762 0021500297 DEC 05, 2015 UTA vs. IND W 265 43 92 0.467 8 ... 44 17 10 2 15 34 119 IND UTA 0.0
1223 1610612762 0021500279 DEC 03, 2015 UTA vs. ORL L 240 31 72 0.431 14 ... 40 19 13 4 10 20 103 ORL UTA 0.0
1224 1610612762 0021500259 NOV 30, 2015 UTA vs. GSW L 240 40 89 0.449 6 ... 45 21 2 5 15 19 106 GSW UTA 0.0
1225 1610612762 0021500243 NOV 28, 2015 UTA vs. NOP W 240 38 82 0.463 9 ... 35 19 8 4 16 19 87 NOP UTA 0.0
1226 1610612762 0021500208 NOV 23, 2015 UTA vs. OKC L 240 28 73 0.384 5 ... 36 22 12 10 16 31 111 OKC UTA 0.0
1227 1610612762 0021500173 NOV 18, 2015 UTA vs. TOR W 240 35 72 0.486 7 ... 37 14 10 4 14 17 89 TOR UTA 0.0
1228 1610612762 0021500091 NOV 07, 2015 UTA vs. MEM W 240 31 74 0.419 12 ... 44 16 8 1 14 21 79 MEM UTA 0.0
1229 1610612762 0021500068 NOV 04, 2015 UTA vs. POR L 240 33 88 0.375 5 ... 48 11 5 7 19 25 108 POR UTA 0.0

1230 rows × 53 columns


In [14]:
full_sched.columns


Out[14]:
Index([   u'Team_ID_home',         u'Game_ID',  u'GAME_DATE_home',
          u'MATCHUP_home',         u'WL_home',        u'MIN_home',
              u'FGM_home',        u'FGA_home',     u'FG_PCT_home',
             u'FG3M_home',       u'FG3A_home',    u'FG3_PCT_home',
              u'FTM_home',        u'FTA_home',     u'FT_PCT_home',
             u'OREB_home',       u'DREB_home',        u'REB_home',
              u'AST_home',        u'STL_home',        u'BLK_home',
              u'TOV_home',         u'PF_home',        u'PTS_home',
        u'Away Team_home',  u'Home Team_home', u'Home Stats_home',
          u'Team_ID_away',  u'GAME_DATE_away',    u'MATCHUP_away',
               u'WL_away',        u'MIN_away',        u'FGM_away',
              u'FGA_away',     u'FG_PCT_away',       u'FG3M_away',
             u'FG3A_away',    u'FG3_PCT_away',        u'FTM_away',
              u'FTA_away',     u'FT_PCT_away',       u'OREB_away',
             u'DREB_away',        u'REB_away',        u'AST_away',
              u'STL_away',        u'BLK_away',        u'TOV_away',
               u'PF_away',        u'PTS_away',  u'Away Team_away',
        u'Home Team_away', u'Home Stats_away'],
      dtype='object')

In [ ]:
cle_id = '1610612739'
cle_dunks = team.TeamShootingSplits(team_id=cle_id, season = '2015-16')
#cle_summary.info()
cle_summary.season_ranks()