In [ ]:
#need to predict points, rebounds, assists, steals, blocks, turnovers
#for PG, SG, SF, PF, C

In [2]:
import pandas as pd
from nba_py import player


//anaconda/lib/python2.7/site-packages/pandas/computation/__init__.py:19: UserWarning: The installed version of numexpr 2.4.4 is not supported in pandas and will be not be used

  UserWarning)

In [28]:
#List of players for a given season
player_list = player.PlayerList()
len(player_list.info())
#player_list.info().ix[0,'PLAYERCODE']


Out[28]:
476

In [16]:
desc = player.PlayerSummary(203112).info()[['FIRST_NAME', 'LAST_NAME', 'BIRTHDATE', 'HEIGHT', 'WEIGHT', 'SEASON_EXP', 'POSITION', 'ROSTERSTATUS', 'TEAM_ID', 'TEAM_NAME']]
desc.ix[0,'WEIGHT']


Out[16]:
u'240'

In [11]:
#Player Summary: gives weight, height, age,  season experience, position, roster status
lbj_id = player.get_player('quincy', 'acy')
lbj = player.PlayerSummary(lbj_id)
print lbj.info().T


                                            0
PERSON_ID                              203112
FIRST_NAME                             Quincy
LAST_NAME                                 Acy
DISPLAY_FIRST_LAST                 Quincy Acy
DISPLAY_LAST_COMMA_FIRST          Acy, Quincy
DISPLAY_FI_LAST                        Q. Acy
BIRTHDATE                 1990-10-06T00:00:00
SCHOOL                                 Baylor
COUNTRY                                   USA
LAST_AFFILIATION                   Baylor/USA
HEIGHT                                    6-7
WEIGHT                                    240
SEASON_EXP                                  4
JERSEY                                     13
POSITION                              Forward
ROSTERSTATUS                           Active
TEAM_ID                            1610612758
TEAM_NAME                               Kings
TEAM_ABBREVIATION                         SAC
TEAM_CODE                               kings
TEAM_CITY                          Sacramento
PLAYERCODE                         quincy_acy
FROM_YEAR                                2012
TO_YEAR                                  2016
DLEAGUE_FLAG                                Y
GAMES_PLAYED_FLAG                           Y

In [17]:
#Player Summary: gets avg points, assists, rebounds and PIE(player impact estimate)
lbj.headline_stats()


Out[17]:
PLAYER_ID PLAYER_NAME TimeFrame PTS AST REB PIE
0 2544 LeBron James 2015-16 25.3 6.8 7.4 0.189

In [22]:
#Player Dashboard:
pdb = player._PlayerDashboard(player_id = lbj_id)
pdb.overall()


---------------------------------------------------------------------------
HTTPError                                 Traceback (most recent call last)
<ipython-input-22-99fdcb15ea12> in <module>()
      1 #Player Dashboard:
----> 2 pdb = player._PlayerDashboard(player_id = lbj_id)
      3 pdb.overall()

//anaconda/lib/python2.7/site-packages/nba_py/player.pyc in __init__(self, player_id, team_id, measure_type, per_mode, plus_minus, pace_adjust, rank, league_id, season, season_type, po_round, outcome, location, month, season_segment, date_from, date_to, opponent_team_id, vs_conference, vs_division, game_segment, period, shot_clock_range, last_n_games)
    179                                       'Period': period,
    180                                       'ShotClockRange': shot_clock_range,
--> 181                                       'LastNGames': last_n_games})
    182 
    183     def overall(self):

//anaconda/lib/python2.7/site-packages/nba_py/__init__.pyc in _get_json(endpoint, params)
     72                headers=HEADERS)
     73     # print _get.url
---> 74     _get.raise_for_status()
     75     return _get.json()
     76 

//anaconda/lib/python2.7/site-packages/requests/models.pyc in raise_for_status(self)
    838 
    839         if http_error_msg:
--> 840             raise HTTPError(http_error_msg, response=self)
    841 
    842     def close(self):

HTTPError: 404 Client Error: Not Found for url: http://stats.nba.com/stats/?PlusMinus=N&PlayerID=2544&TeamID=0&Location=&ShotClockRange=&SeasonType=Regular+Season&Season=2015-16&PaceAdjust=N&DateFrom=&VsConference=&OpponentTeamID=0&DateTo=&GameSegment=&LastNGames=0&VsDivision=&LeagueID=00&Outcome=&MeasureType=Base&PORound=0&PerMode=PerGame&SeasonSegment=&Period=0&Rank=N&Month=0

In [26]:
#Has last n game splits for a player: minutes, normal stats, +/-
ln_splits = player.PlayerLastNGamesSplits(player_id = lbj_id)
ln_splits.last5().columns


Out[26]:
Index([u'GROUP_SET', u'GROUP_VALUE', u'GP', u'W', u'L', u'W_PCT', u'MIN',
       u'FGM', u'FGA', u'FG_PCT', u'FG3M', u'FG3A', u'FG3_PCT', u'FTM', u'FTA',
       u'FT_PCT', u'OREB', u'DREB', u'REB', u'AST', u'TOV', u'STL', u'BLK',
       u'BLKA', u'PF', u'PFD', u'PTS', u'PLUS_MINUS', u'DD2', u'TD3', u'CFID',
       u'CFPARAMS'],
      dtype='object')

In [28]:
#Player performance splits: see basic stats in different game outcomes
pp_splits = player.PlayerPerformanceSplits(player_id = lbj_id)
pp_splits.score_differential()


Out[28]:
GROUP_SET GROUP_VALUE_ORDER GROUP_VALUE GROUP_VALUE_2 GP W L W_PCT MIN FGM ... BLK BLKA PF PFD PTS PLUS_MINUS DD2 TD3 CFID CFPARAMS
0 Score Differential 0 W All 56 56 0 1.0 35.0 9.6 ... 0.6 0.8 1.8 5.4 25.2 13.0 23 3 73 NaN
1 Score Differential 1 W 5 Points and Under 11 11 0 1.0 39.0 10.3 ... 0.5 1.5 2.0 6.5 27.6 3.5 6 0 74 NaN
2 Score Differential 2 W 6-10 Points 6 6 0 1.0 36.8 9.8 ... 0.7 0.2 2.0 5.0 26.2 5.5 2 0 75 NaN
3 Score Differential 2 W 6-10 Points 10 10 0 1.0 36.7 11.2 ... 0.5 1.0 2.2 5.3 28.2 14.2 4 0 75 NaN
4 Score Differential 3 W 11-15 Points 6 6 0 1.0 34.2 9.3 ... 0.8 0.8 2.0 5.8 24.3 17.8 3 0 76 NaN
5 Score Differential 3 W 11-15 Points 8 8 0 1.0 34.2 9.1 ... 1.1 0.5 2.1 5.3 23.3 11.6 1 1 76 NaN
6 Score Differential 4 W 16-20 Points 1 1 0 1.0 30.9 8.0 ... 1.0 2.0 1.0 5.0 21.0 16.0 1 1 77 NaN
7 Score Differential 4 W 16-20 Points 2 2 0 1.0 33.3 9.5 ... 1.0 0.5 1.0 6.5 26.0 16.0 2 0 77 NaN
8 Score Differential 5 W Over 20 Points 8 8 0 1.0 31.0 8.0 ... 0.4 0.6 1.3 4.0 20.9 21.3 3 0 78 NaN
9 Score Differential 5 W Over 20 Points 4 4 0 1.0 30.1 9.0 ... 0.3 0.5 1.3 4.8 24.3 24.5 1 1 78 NaN
10 Score Differential 0 L All 20 0 20 0.0 37.4 9.9 ... 0.7 1.2 2.0 5.7 25.4 -5.6 5 0 79 NaN
11 Score Differential 1 L 5 Points and Under 9 0 9 0.0 39.2 10.3 ... 0.6 1.4 2.3 6.6 28.2 1.8 2 0 80 NaN
12 Score Differential 2 L 6-10 Points 6 0 6 0.0 38.6 10.2 ... 0.8 1.0 1.5 5.2 25.0 -4.7 1 0 81 NaN
13 Score Differential 3 L 11-15 Points 1 0 1 0.0 37.4 8.0 ... 1.0 1.0 3.0 7.0 24.0 -12.0 1 0 82 NaN
14 Score Differential 3 L 11-15 Points 1 0 1 0.0 39.7 11.0 ... 1.0 1.0 3.0 5.0 26.0 -2.0 1 0 82 NaN
15 Score Differential 5 L Over 20 Points 2 0 2 0.0 26.5 8.5 ... 0.0 0.5 1.5 3.0 19.0 -26.0 0 0 84 NaN
16 Score Differential 5 L Over 20 Points 1 0 1 0.0 32.9 7.0 ... 1.0 1.0 1.0 5.0 16.0 -34.0 0 0 84 NaN

17 rows × 34 columns


In [29]:
#Player Game Logs.  Has all basic stats for every game in a season--> useful
g_logs = player.PlayerGameLogs(player_id = lbj_id)
g_logs.info()


Out[29]:
SEASON_ID Player_ID Game_ID GAME_DATE MATCHUP WL MIN FGM FGA FG_PCT ... DREB REB AST STL BLK TOV PF PTS PLUS_MINUS VIDEO_AVAILABLE
0 22015 2544 0021501203 APR 11, 2016 CLE vs. ATL W 32 13 16 0.813 ... 5 6 6 2 1 4 2 34 13 1
1 22015 2544 0021501191 APR 09, 2016 CLE @ CHI L 39 13 17 0.765 ... 4 7 3 0 1 4 1 33 7 1
2 22015 2544 0021501159 APR 05, 2016 CLE @ MIL W 28 7 9 0.778 ... 5 5 9 0 1 4 0 17 22 1
3 22015 2544 0021501144 APR 03, 2016 CLE vs. CHA W 41 14 22 0.636 ... 5 8 12 2 0 5 4 31 10 1
4 22015 2544 0021501131 APR 01, 2016 CLE @ ATL W 44 12 26 0.462 ... 13 16 9 3 1 3 4 29 6 1
5 22015 2544 0021501122 MAR 31, 2016 CLE vs. BKN W 31 8 11 0.727 ... 4 4 11 2 1 6 0 24 28 1
6 22015 2544 0021501086 MAR 26, 2016 CLE @ NYK W 36 10 21 0.476 ... 8 11 11 1 2 2 4 27 20 1
7 22015 2544 0021501069 MAR 24, 2016 CLE @ BKN L 35 13 16 0.813 ... 5 6 5 1 0 4 2 30 -8 1
8 22015 2544 0021501059 MAR 23, 2016 CLE vs. MIL W 37 9 22 0.409 ... 1 6 8 2 1 2 0 26 12 1
9 22015 2544 0021501044 MAR 21, 2016 CLE vs. DEN W 33 12 19 0.632 ... 8 11 11 0 0 3 2 33 38 1
10 22015 2544 0021501033 MAR 19, 2016 CLE @ MIA L 27 13 20 0.650 ... 3 3 3 1 0 3 1 26 -23 1
11 22015 2544 0021501020 MAR 18, 2016 CLE @ ORL W 36 6 15 0.400 ... 6 7 8 1 1 4 3 18 -5 1
12 22015 2544 0021500994 MAR 14, 2016 CLE @ UTA L 37 10 20 0.500 ... 6 12 3 1 0 3 0 23 6 1
13 22015 2544 0021500983 MAR 13, 2016 CLE @ LAC W 31 9 15 0.600 ... 5 6 5 1 0 2 2 27 16 1
14 22015 2544 0021500962 MAR 10, 2016 CLE @ LAL W 35 9 18 0.500 ... 3 5 7 0 2 3 2 24 6 1
15 22015 2544 0021500957 MAR 09, 2016 CLE @ SAC W 37 8 19 0.421 ... 7 11 6 0 0 5 1 25 16 1
16 22015 2544 0021500938 MAR 07, 2016 CLE vs. MEM L 38 11 19 0.579 ... 7 9 5 1 0 4 2 28 -9 1
17 22015 2544 0021500922 MAR 05, 2016 CLE vs. BOS W 36 11 20 0.550 ... 7 11 8 2 1 4 2 28 4 1
18 22015 2544 0021500917 MAR 04, 2016 CLE vs. WAS W 30 7 18 0.389 ... 12 13 8 3 0 1 1 19 15 1
19 22015 2544 0021500884 FEB 29, 2016 CLE vs. IND W 37 14 22 0.636 ... 5 5 4 2 0 5 2 33 12 1
20 22015 2544 0021500864 FEB 26, 2016 CLE @ TOR L 40 9 18 0.500 ... 7 8 7 1 0 6 2 25 10 1
21 22015 2544 0021500845 FEB 24, 2016 CLE vs. CHA W 30 8 13 0.615 ... 6 7 7 2 0 2 1 23 4 1
22 22015 2544 0021500833 FEB 22, 2016 CLE vs. DET L 37 5 18 0.278 ... 7 8 5 3 0 6 2 12 -4 1
23 22015 2544 0021500824 FEB 21, 2016 CLE @ OKC W 37 11 22 0.500 ... 4 7 11 3 0 5 3 25 22 1
24 22015 2544 0021500803 FEB 18, 2016 CLE vs. CHI W 35 11 19 0.579 ... 7 9 9 0 1 2 3 25 13 1
25 22015 2544 0021500795 FEB 10, 2016 CLE vs. LAL W 37 12 22 0.545 ... 6 7 11 1 0 1 1 29 16 1
26 22015 2544 0021500775 FEB 08, 2016 CLE vs. SAC W 31 8 16 0.500 ... 9 10 10 2 1 4 1 21 16 1
27 22015 2544 0021500763 FEB 06, 2016 CLE vs. NOP W 37 11 20 0.550 ... 3 3 8 1 0 2 2 27 8 1
28 22015 2544 0021500755 FEB 05, 2016 CLE vs. BOS L 38 9 23 0.391 ... 4 7 4 2 1 6 2 30 -7 1
29 22015 2544 0021500735 FEB 03, 2016 CLE @ CHA L 39 10 21 0.476 ... 6 6 6 1 2 1 1 23 -9 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
46 22015 2544 0021500499 JAN 02, 2016 CLE vs. ORL W 29 11 18 0.611 ... 5 5 3 2 0 0 2 29 28 1
47 22015 2544 0021500473 DEC 29, 2015 CLE @ DEN W 34 13 24 0.542 ... 3 6 2 2 1 5 2 34 3 1
48 22015 2544 0021500466 DEC 28, 2015 CLE @ PHX W 35 4 10 0.400 ... 4 4 7 2 1 2 3 14 3 1
49 22015 2544 0021500453 DEC 26, 2015 CLE @ POR L 26 4 13 0.308 ... 4 4 5 0 0 3 2 12 -29 1
50 22015 2544 0021500438 DEC 25, 2015 CLE @ GSW L 39 10 26 0.385 ... 7 9 2 1 2 4 0 25 -9 1
51 22015 2544 0021500424 DEC 23, 2015 CLE vs. NYK W 38 9 22 0.409 ... 8 9 5 0 0 1 2 24 7 1
52 22015 2544 0021500405 DEC 20, 2015 CLE vs. PHI W 25 10 17 0.588 ... 5 5 4 3 1 2 0 23 33 1
53 22015 2544 0021500384 DEC 17, 2015 CLE vs. OKC W 40 12 27 0.444 ... 7 9 11 2 0 7 2 33 5 1
54 22015 2544 0021500367 DEC 15, 2015 CLE @ BOS W 36 10 20 0.500 ... 6 7 3 2 1 6 3 24 17 1
55 22015 2544 0021500334 DEC 11, 2015 CLE @ ORL W 29 10 15 0.667 ... 3 3 8 4 0 4 0 25 36 1
56 22015 2544 0021500313 DEC 08, 2015 CLE vs. POR W 40 14 24 0.583 ... 9 10 3 2 3 2 3 33 7 1
57 22015 2544 0021500288 DEC 04, 2015 CLE @ NOP L 45 13 29 0.448 ... 5 7 8 1 1 5 4 37 -4 1
58 22015 2544 0021500262 DEC 01, 2015 CLE vs. WAS L 37 8 20 0.400 ... 9 13 4 1 1 9 3 24 -12 1
59 22015 2544 0021500240 NOV 28, 2015 CLE vs. BKN W 36 10 22 0.455 ... 7 9 5 1 0 2 0 26 -1 2
60 22015 2544 0021500227 NOV 27, 2015 CLE @ CHA W 38 8 20 0.400 ... 11 13 5 0 0 3 2 25 1 1
61 22015 2544 0021500219 NOV 25, 2015 CLE @ TOR L 40 6 16 0.375 ... 4 6 8 0 0 2 1 24 13 1
62 22015 2544 0021500203 NOV 23, 2015 CLE vs. ORL W 35 7 14 0.500 ... 6 6 13 1 0 2 0 15 29 1
63 22015 2544 0021500191 NOV 21, 2015 CLE vs. ATL W 33 8 15 0.533 ... 9 11 8 0 2 3 1 19 17 1
64 22015 2544 0021500176 NOV 19, 2015 CLE vs. MIL W 35 9 13 0.692 ... 6 9 6 0 0 4 3 27 13 1
65 22015 2544 0021500160 NOV 17, 2015 CLE @ DET L 40 11 21 0.524 ... 6 6 3 0 0 4 3 30 -6 1
66 22015 2544 0021500141 NOV 14, 2015 CLE @ MIL L 45 13 27 0.481 ... 8 12 5 1 3 7 3 37 -2 1
67 22015 2544 0021500130 NOV 13, 2015 CLE @ NYK W 39 12 21 0.571 ... 3 3 6 2 1 3 4 31 17 1
68 22015 2544 0021500106 NOV 10, 2015 CLE vs. UTA W 38 11 19 0.579 ... 4 7 8 2 0 5 2 31 4 1
69 22015 2544 0021500094 NOV 08, 2015 CLE vs. IND W 35 10 23 0.435 ... 6 6 4 0 0 2 0 29 1 1
70 22015 2544 0021500078 NOV 06, 2015 CLE vs. PHI W 36 12 22 0.545 ... 4 4 13 2 0 2 1 31 24 1
71 22015 2544 0021500063 NOV 04, 2015 CLE vs. NYK W 35 9 23 0.391 ... 3 5 3 4 1 3 1 23 14 1
72 22015 2544 0021500046 NOV 02, 2015 CLE @ PHI W 33 9 19 0.474 ... 9 9 11 4 2 3 3 22 21 1
73 22015 2544 0021500021 OCT 30, 2015 CLE vs. MIA W 34 13 19 0.684 ... 3 5 4 1 0 4 3 29 7 1
74 22015 2544 0021500011 OCT 28, 2015 CLE @ MEM W 31 4 13 0.308 ... 6 7 5 3 0 3 1 12 10 1
75 22015 2544 0021500002 OCT 27, 2015 CLE @ CHI L 36 12 22 0.545 ... 10 10 5 1 0 1 3 25 1 1

76 rows × 27 columns


In [33]:
#Player vs Player.  not too sure of what it outputs
pg_id = player.get_player('paul', 'george')
pvp = player.PlayerVsPlayer(player_id = lbj_id, vs_player_id = pg_id)
pvp.on_off_court()


Out[33]:
GROUP_SET PLAYER_ID PLAYER_NAME VS_PLAYER_ID VS_PLAYER_NAME COURT_STATUS GP W L W_PCT ... TOV STL BLK BLKA PF PFD PTS PLUS_MINUS CFID CFPARAMS
0 Vs. Player 2544 LeBron James 202331 George, Paul On 3 0 0 0.0 ... 2.3 1.3 0.3 2.0 1.0 5.7 27.3 4.0 86 202331
1 Vs. Player 2544 LeBron James 202331 George, Paul Off 3 0 0 0.0 ... 0.3 0.0 0.0 0.0 0.3 0.0 1.3 0.0 87 202331

2 rows × 34 columns


In [3]:
glogs = pd.read_csv('player_glogs.csv')

In [4]:
glogs


Out[4]:
SEASON_ID Player_ID Game_ID GAME_DATE MATCHUP WL MIN FGM FGA FG_PCT ... DREB REB AST STL BLK TOV PF PTS PLUS_MINUS VIDEO_AVAILABLE
0 22015 2544 21501203 APR 11, 2016 CLE vs. ATL W 32 13 16 0.813 ... 5 6 6 2 1 4 2 34 13 1
1 22015 2544 21501191 APR 09, 2016 CLE @ CHI L 39 13 17 0.765 ... 4 7 3 0 1 4 1 33 7 1
2 22015 2544 21501159 APR 05, 2016 CLE @ MIL W 28 7 9 0.778 ... 5 5 9 0 1 4 0 17 22 1
3 22015 2544 21501144 APR 03, 2016 CLE vs. CHA W 41 14 22 0.636 ... 5 8 12 2 0 5 4 31 10 1
4 22015 2544 21501131 APR 01, 2016 CLE @ ATL W 44 12 26 0.462 ... 13 16 9 3 1 3 4 29 6 1
5 22015 2544 21501122 MAR 31, 2016 CLE vs. BKN W 31 8 11 0.727 ... 4 4 11 2 1 6 0 24 28 1
6 22015 2544 21501086 MAR 26, 2016 CLE @ NYK W 36 10 21 0.476 ... 8 11 11 1 2 2 4 27 20 1
7 22015 2544 21501069 MAR 24, 2016 CLE @ BKN L 35 13 16 0.813 ... 5 6 5 1 0 4 2 30 -8 1
8 22015 2544 21501059 MAR 23, 2016 CLE vs. MIL W 37 9 22 0.409 ... 1 6 8 2 1 2 0 26 12 1
9 22015 2544 21501044 MAR 21, 2016 CLE vs. DEN W 33 12 19 0.632 ... 8 11 11 0 0 3 2 33 38 1
10 22015 2544 21501033 MAR 19, 2016 CLE @ MIA L 27 13 20 0.650 ... 3 3 3 1 0 3 1 26 -23 1
11 22015 2544 21501020 MAR 18, 2016 CLE @ ORL W 36 6 15 0.400 ... 6 7 8 1 1 4 3 18 -5 1
12 22015 2544 21500994 MAR 14, 2016 CLE @ UTA L 37 10 20 0.500 ... 6 12 3 1 0 3 0 23 6 1
13 22015 2544 21500983 MAR 13, 2016 CLE @ LAC W 31 9 15 0.600 ... 5 6 5 1 0 2 2 27 16 1
14 22015 2544 21500962 MAR 10, 2016 CLE @ LAL W 35 9 18 0.500 ... 3 5 7 0 2 3 2 24 6 1
15 22015 2544 21500957 MAR 09, 2016 CLE @ SAC W 37 8 19 0.421 ... 7 11 6 0 0 5 1 25 16 1
16 22015 2544 21500938 MAR 07, 2016 CLE vs. MEM L 38 11 19 0.579 ... 7 9 5 1 0 4 2 28 -9 1
17 22015 2544 21500922 MAR 05, 2016 CLE vs. BOS W 36 11 20 0.550 ... 7 11 8 2 1 4 2 28 4 1
18 22015 2544 21500917 MAR 04, 2016 CLE vs. WAS W 30 7 18 0.389 ... 12 13 8 3 0 1 1 19 15 1
19 22015 2544 21500884 FEB 29, 2016 CLE vs. IND W 37 14 22 0.636 ... 5 5 4 2 0 5 2 33 12 1
20 22015 2544 21500864 FEB 26, 2016 CLE @ TOR L 40 9 18 0.500 ... 7 8 7 1 0 6 2 25 10 1
21 22015 2544 21500845 FEB 24, 2016 CLE vs. CHA W 30 8 13 0.615 ... 6 7 7 2 0 2 1 23 4 1
22 22015 2544 21500833 FEB 22, 2016 CLE vs. DET L 37 5 18 0.278 ... 7 8 5 3 0 6 2 12 -4 1
23 22015 2544 21500824 FEB 21, 2016 CLE @ OKC W 37 11 22 0.500 ... 4 7 11 3 0 5 3 25 22 1
24 22015 2544 21500803 FEB 18, 2016 CLE vs. CHI W 35 11 19 0.579 ... 7 9 9 0 1 2 3 25 13 1
25 22015 2544 21500795 FEB 10, 2016 CLE vs. LAL W 37 12 22 0.545 ... 6 7 11 1 0 1 1 29 16 1
26 22015 2544 21500775 FEB 08, 2016 CLE vs. SAC W 31 8 16 0.500 ... 9 10 10 2 1 4 1 21 16 1
27 22015 2544 21500763 FEB 06, 2016 CLE vs. NOP W 37 11 20 0.550 ... 3 3 8 1 0 2 2 27 8 1
28 22015 2544 21500755 FEB 05, 2016 CLE vs. BOS L 38 9 23 0.391 ... 4 7 4 2 1 6 2 30 -7 1
29 22015 2544 21500735 FEB 03, 2016 CLE @ CHA L 39 10 21 0.476 ... 6 6 6 1 2 1 1 23 -9 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
46 22015 2544 21500499 JAN 02, 2016 CLE vs. ORL W 29 11 18 0.611 ... 5 5 3 2 0 0 2 29 28 1
47 22015 2544 21500473 DEC 29, 2015 CLE @ DEN W 34 13 24 0.542 ... 3 6 2 2 1 5 2 34 3 1
48 22015 2544 21500466 DEC 28, 2015 CLE @ PHX W 35 4 10 0.400 ... 4 4 7 2 1 2 3 14 3 1
49 22015 2544 21500453 DEC 26, 2015 CLE @ POR L 26 4 13 0.308 ... 4 4 5 0 0 3 2 12 -29 1
50 22015 2544 21500438 DEC 25, 2015 CLE @ GSW L 39 10 26 0.385 ... 7 9 2 1 2 4 0 25 -9 1
51 22015 2544 21500424 DEC 23, 2015 CLE vs. NYK W 38 9 22 0.409 ... 8 9 5 0 0 1 2 24 7 1
52 22015 2544 21500405 DEC 20, 2015 CLE vs. PHI W 25 10 17 0.588 ... 5 5 4 3 1 2 0 23 33 1
53 22015 2544 21500384 DEC 17, 2015 CLE vs. OKC W 40 12 27 0.444 ... 7 9 11 2 0 7 2 33 5 1
54 22015 2544 21500367 DEC 15, 2015 CLE @ BOS W 36 10 20 0.500 ... 6 7 3 2 1 6 3 24 17 1
55 22015 2544 21500334 DEC 11, 2015 CLE @ ORL W 29 10 15 0.667 ... 3 3 8 4 0 4 0 25 36 1
56 22015 2544 21500313 DEC 08, 2015 CLE vs. POR W 40 14 24 0.583 ... 9 10 3 2 3 2 3 33 7 1
57 22015 2544 21500288 DEC 04, 2015 CLE @ NOP L 45 13 29 0.448 ... 5 7 8 1 1 5 4 37 -4 1
58 22015 2544 21500262 DEC 01, 2015 CLE vs. WAS L 37 8 20 0.400 ... 9 13 4 1 1 9 3 24 -12 1
59 22015 2544 21500240 NOV 28, 2015 CLE vs. BKN W 36 10 22 0.455 ... 7 9 5 1 0 2 0 26 -1 2
60 22015 2544 21500227 NOV 27, 2015 CLE @ CHA W 38 8 20 0.400 ... 11 13 5 0 0 3 2 25 1 1
61 22015 2544 21500219 NOV 25, 2015 CLE @ TOR L 40 6 16 0.375 ... 4 6 8 0 0 2 1 24 13 1
62 22015 2544 21500203 NOV 23, 2015 CLE vs. ORL W 35 7 14 0.500 ... 6 6 13 1 0 2 0 15 29 1
63 22015 2544 21500191 NOV 21, 2015 CLE vs. ATL W 33 8 15 0.533 ... 9 11 8 0 2 3 1 19 17 1
64 22015 2544 21500176 NOV 19, 2015 CLE vs. MIL W 35 9 13 0.692 ... 6 9 6 0 0 4 3 27 13 1
65 22015 2544 21500160 NOV 17, 2015 CLE @ DET L 40 11 21 0.524 ... 6 6 3 0 0 4 3 30 -6 1
66 22015 2544 21500141 NOV 14, 2015 CLE @ MIL L 45 13 27 0.481 ... 8 12 5 1 3 7 3 37 -2 1
67 22015 2544 21500130 NOV 13, 2015 CLE @ NYK W 39 12 21 0.571 ... 3 3 6 2 1 3 4 31 17 1
68 22015 2544 21500106 NOV 10, 2015 CLE vs. UTA W 38 11 19 0.579 ... 4 7 8 2 0 5 2 31 4 1
69 22015 2544 21500094 NOV 08, 2015 CLE vs. IND W 35 10 23 0.435 ... 6 6 4 0 0 2 0 29 1 1
70 22015 2544 21500078 NOV 06, 2015 CLE vs. PHI W 36 12 22 0.545 ... 4 4 13 2 0 2 1 31 24 1
71 22015 2544 21500063 NOV 04, 2015 CLE vs. NYK W 35 9 23 0.391 ... 3 5 3 4 1 3 1 23 14 1
72 22015 2544 21500046 NOV 02, 2015 CLE @ PHI W 33 9 19 0.474 ... 9 9 11 4 2 3 3 22 21 1
73 22015 2544 21500021 OCT 30, 2015 CLE vs. MIA W 34 13 19 0.684 ... 3 5 4 1 0 4 3 29 7 1
74 22015 2544 21500011 OCT 28, 2015 CLE @ MEM W 31 4 13 0.308 ... 6 7 5 3 0 3 1 12 10 1
75 22015 2544 21500002 OCT 27, 2015 CLE @ CHI L 36 12 22 0.545 ... 10 10 5 1 0 1 3 25 1 1

76 rows × 27 columns


In [9]:
len(glogs[glogs['Player_ID']==2544])


Out[9]:
76

In [10]:
from Player import Player
lbj=Player(f_name='Lebron', l_name = 'James')


1775    2544
Name: PERSON_ID, dtype: int64
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-10-d2f2838019ab> in <module>()
      1 from Player import Player
----> 2 lbj=Player(f_name='Lebron', l_name = 'James')

/Users/Matt/Documents/!Research/Github/NBA/Player/Player.py in __init__(self, pid, f_name, l_name, season)
     23             self.f_name = self.desc.ix[0, 'FIRST_NAME']
     24             self.l_name = self.desc.ix[0, 'LAST_NAME']
---> 25         self.game_logs = self.get_game_logs()
     26 
     27     def get_desc(self):

/Users/Matt/Documents/!Research/Github/NBA/Player/Player.py in get_game_logs(self)
     48         if os.path.isfile('player_glogs.csv'):
     49             saved_glogs = pd.read_csv('player_glogs.csv')
---> 50             if saved_glogs[saved_glogs['Player_ID']==self.p_id] is not None:
     51                 game_logs = saved_glogs[saved_glogs['Player_ID']==self.p_id]
     52             else:

//anaconda/lib/python2.7/site-packages/pandas/core/ops.pyc in wrapper(self, other, axis)
    731             name = _maybe_match_name(self, other)
    732             if len(self) != len(other):
--> 733                 raise ValueError('Series lengths must match to compare')
    734             return self._constructor(na_op(self.values, other.values),
    735                                      index=self.index, name=name)

ValueError: Series lengths must match to compare

In [13]:
pg_id = player.get_player('paul', 'george')
pg_id


Out[13]:
1265    202331
Name: PERSON_ID, dtype: int64

In [27]:
pg_values = pg_id.values
pg_values[0]


Out[27]:
202331

In [ ]: