In [20]:
#Import Packages
import pandas as pd
import numpy as np
from scipy.stats import norm
from Schedule.Schedule import Schedule
from Schedule.Stats import Stats
from Regression.ELO import ELO
from Regression.Game_Scores_v2 import Game_Scores
%matplotlib inline

In [2]:
#Get schedule of games
sched_2014 = Schedule(b_dt = '10/1/2014')
sched_2015 = Schedule(b_dt = '10/1/2015')

In [3]:
#Adds four factors for each game
sched_2014.add_four_factors()
sched_2015.add_four_factors()


Out[3]:
Team_ID_home Game_ID FGM_home FGA_home FG_PCT_home FG3M_home FG3A_home FG3_PCT_home FTM_home FTA_home ... Home Team Away Team H_FF_EFG H_FF_ORB H_FF_FTFGA H_FF_TOV A_FF_EFG A_FF_ORB A_FF_FTFGA A_FF_TOV
0 1610612737 21501188 46 88 0.523 17 33 0.515 9 11 ... ATL BOS 0.619318 0.142857 0.102273 0.162152 0.505556 0.204082 0.177778 0.142099
1 1610612737 21501173 33 76 0.434 12 32 0.375 17 21 ... ATL TOR 0.513158 0.116279 0.223684 0.139425 0.428571 0.181818 0.178571 0.114823
2 1610612737 21501157 39 95 0.411 11 34 0.324 14 19 ... ATL PHX 0.468421 0.245283 0.147368 0.150432 0.444444 0.229167 0.222222 0.223881
3 1610612737 21501131 38 95 0.400 9 30 0.300 23 26 ... ATL CLE 0.447368 0.098039 0.242105 0.128822 0.459184 0.203704 0.204082 0.106534
4 1610612737 21501076 41 97 0.423 5 32 0.156 14 17 ... ATL MIL 0.448454 0.340000 0.144330 0.111698 0.434524 0.363636 0.202381 0.158831
5 1610612737 21501048 38 78 0.487 13 33 0.394 13 17 ... ATL WAS 0.570513 0.054054 0.166667 0.143619 0.576923 0.225000 0.131868 0.090180
6 1610612737 21501029 44 88 0.500 14 38 0.368 7 12 ... ATL HOU 0.579545 0.200000 0.079545 0.159553 0.422619 0.326087 0.309524 0.170614
7 1610612737 21501015 40 80 0.500 12 26 0.462 24 28 ... ATL DEN 0.575000 0.189189 0.300000 0.123305 0.482759 0.214286 0.160920 0.140732
8 1610612737 21500984 40 85 0.471 15 30 0.500 9 10 ... ATL IND 0.558824 0.225000 0.105882 0.157233 0.408046 0.145833 0.045977 0.161486
9 1610612737 21500974 36 84 0.429 11 34 0.324 12 17 ... ATL MEM 0.494048 0.173913 0.142857 0.116427 0.378947 0.338983 0.115789 0.164677
10 1610612737 21500878 38 77 0.494 8 17 0.471 3 5 ... ATL CHA 0.545455 0.162162 0.038961 0.170068 0.376543 0.192308 0.185185 0.068871
11 1610612737 21500865 37 89 0.416 7 34 0.206 22 24 ... ATL CHI 0.455056 0.288889 0.247191 0.112751 0.392045 0.326923 0.215909 0.198649
12 1610612737 21500836 36 86 0.419 10 34 0.294 10 16 ... ATL GSW 0.476744 0.177778 0.116279 0.166601 0.516854 0.133333 0.112360 0.128357
13 1610612737 21500819 44 106 0.415 9 41 0.220 12 18 ... ATL MIL 0.457547 0.172414 0.113208 0.133422 0.456731 0.303571 0.211538 0.143970
14 1610612737 21500808 41 87 0.471 16 36 0.444 13 13 ... ATL MIA 0.563218 0.181818 0.149425 0.198638 0.545455 0.227273 0.215909 0.134202
15 1610612737 21500780 43 92 0.467 12 29 0.414 12 20 ... ATL ORL 0.532609 0.163265 0.130435 0.131086 0.543011 0.133333 0.172043 0.118527
16 1610612737 21500750 39 76 0.513 10 27 0.370 14 20 ... ATL IND 0.578947 0.081081 0.184211 0.154959 0.489011 0.395833 0.076923 0.200084
17 1610612737 21500723 42 80 0.525 14 35 0.400 14 19 ... ATL DAL 0.612500 0.156250 0.175000 0.152501 0.405882 0.181818 0.329412 0.061400
18 1610612737 21500687 33 79 0.418 10 23 0.435 7 14 ... ATL LAC 0.481013 0.177778 0.088608 0.221864 0.417647 0.180000 0.164706 0.114298
19 1610612737 21500620 41 80 0.513 9 19 0.474 7 10 ... ATL ORL 0.568750 0.114286 0.087500 0.174538 0.379310 0.203704 0.172414 0.132924
20 1610612737 21500602 44 79 0.557 8 29 0.276 18 24 ... ATL BKN 0.607595 0.147059 0.227848 0.105753 0.474359 0.166667 0.153846 0.176422
21 1610612737 21500551 49 94 0.521 10 24 0.417 12 15 ... ATL CHI 0.574468 0.190476 0.127660 0.139405 0.475904 0.272727 0.313253 0.198788
22 1610612737 21500521 37 87 0.425 15 39 0.385 12 19 ... ATL NYK 0.511494 0.285714 0.137931 0.137770 0.505952 0.289474 0.261905 0.097234
23 1610612737 21500442 47 88 0.534 8 24 0.333 15 18 ... ATL NYK 0.579545 0.250000 0.170455 0.094817 0.524691 0.307692 0.160494 0.223396
24 1610612737 21500429 43 89 0.483 6 20 0.300 15 20 ... ATL DET 0.516854 0.232558 0.168539 0.128968 0.466292 0.288889 0.191011 0.133946
25 1610612737 21500413 37 77 0.481 9 29 0.310 23 28 ... ATL POR 0.538961 0.052632 0.298701 0.102754 0.500000 0.325581 0.197531 0.190114
26 1610612737 21500376 48 78 0.615 10 21 0.476 21 24 ... ATL PHI 0.679487 0.074074 0.269231 0.121753 0.600000 0.233333 0.213333 0.218775
27 1610612737 21500360 33 84 0.393 8 33 0.242 14 15 ... ATL MIA 0.440476 0.152174 0.166667 0.143443 0.488764 0.333333 0.146067 0.156904
28 1610612737 21500347 30 80 0.375 5 24 0.208 13 16 ... ATL SAS 0.406250 0.140000 0.162500 0.175185 0.554054 0.187500 0.283784 0.228447
29 1610612737 21500286 37 74 0.500 10 26 0.385 16 20 ... ATL LAL 0.567568 0.250000 0.216216 0.187225 0.447674 0.306122 0.116279 0.172563
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1200 1610612762 21500860 33 77 0.429 3 17 0.176 9 12 ... UTA SAS 0.448052 0.105263 0.116883 0.123208 0.537975 0.250000 0.139241 0.127492
1201 1610612762 21500843 38 74 0.514 10 24 0.417 31 38 ... UTA HOU 0.581081 0.250000 0.418919 0.202468 0.477011 0.250000 0.356322 0.129582
1202 1610612762 21500817 37 68 0.544 10 23 0.435 27 44 ... UTA BOS 0.617647 0.235294 0.397059 0.158966 0.413580 0.156863 0.320988 0.073038
1203 1610612762 21500758 30 77 0.390 8 27 0.296 16 23 ... UTA MIL 0.441558 0.260870 0.207792 0.166445 0.471831 0.175000 0.197183 0.214500
1204 1610612762 21500743 33 74 0.446 5 22 0.227 14 20 ... UTA DEN 0.479730 0.200000 0.189189 0.157658 0.400000 0.230769 0.357143 0.156390
1205 1610612762 21500728 38 85 0.447 7 18 0.389 22 33 ... UTA CHI 0.488235 0.227273 0.258824 0.135240 0.461111 0.166667 0.144444 0.133588
1206 1610612762 21500704 40 76 0.526 10 25 0.400 13 16 ... UTA MIN 0.592105 0.285714 0.171053 0.151093 0.480000 0.302326 0.240000 0.160110
1207 1610612762 21500690 40 81 0.494 12 31 0.387 10 15 ... UTA CHA 0.567901 0.189189 0.123457 0.110375 0.411765 0.116279 0.250000 0.199468
1208 1610612762 21500673 34 85 0.400 9 29 0.310 15 18 ... UTA DET 0.452941 0.255319 0.176471 0.138416 0.526667 0.159091 0.213333 0.108085
1209 1610612762 21500608 41 83 0.494 12 24 0.500 15 18 ... UTA LAL 0.566265 0.282051 0.180723 0.111210 0.394444 0.285714 0.122222 0.145955
1210 1610612762 21500591 35 83 0.422 6 34 0.176 25 34 ... UTA SAC 0.457831 0.200000 0.301205 0.128764 0.493243 0.333333 0.405405 0.160462
1211 1610612762 21500555 39 71 0.549 9 20 0.450 11 18 ... UTA MIA 0.612676 0.172414 0.154930 0.177936 0.451220 0.319149 0.109756 0.185833
1212 1610612762 21500518 30 75 0.400 12 29 0.414 19 25 ... UTA HOU 0.480000 0.348837 0.253333 0.174419 0.566176 0.171429 0.235294 0.183402
1213 1610612762 21500503 31 75 0.413 9 27 0.333 21 28 ... UTA MEM 0.473333 0.219512 0.280000 0.169635 0.450617 0.170213 0.172840 0.115256
1214 1610612762 21500489 43 86 0.500 15 33 0.455 8 11 ... UTA POR 0.587209 0.279070 0.093023 0.059637 0.551282 0.210526 0.128205 0.116063
1215 1610612762 21500467 28 84 0.333 7 26 0.269 32 36 ... UTA PHI 0.375000 0.340909 0.380952 0.150240 0.447674 0.173913 0.162791 0.172480
1216 1610612762 21500452 36 74 0.486 10 27 0.370 22 27 ... UTA LAC 0.554054 0.228571 0.297297 0.170430 0.563291 0.200000 0.253165 0.126904
1217 1610612762 21500417 36 79 0.456 9 25 0.360 29 37 ... UTA PHX 0.512658 0.261905 0.367089 0.106067 0.436709 0.200000 0.253165 0.140268
1218 1610612762 21500395 34 73 0.466 10 25 0.400 19 25 ... UTA DEN 0.534247 0.147059 0.260274 0.150538 0.430380 0.306122 0.253165 0.157303
1219 1610612762 21500380 32 67 0.478 7 20 0.350 23 29 ... UTA NOP 0.529851 0.151515 0.343284 0.138313 0.534247 0.216216 0.356164 0.114521
1220 1610612762 21500341 33 78 0.423 8 28 0.286 16 24 ... UTA OKC 0.474359 0.244444 0.205128 0.124210 0.506329 0.282051 0.177215 0.147660
1221 1610612762 21500327 39 80 0.488 9 21 0.429 19 23 ... UTA NYK 0.543750 0.236842 0.237500 0.147183 0.448718 0.142857 0.192308 0.107666
1222 1610612762 21500297 43 92 0.467 8 23 0.348 28 37 ... UTA IND 0.510870 0.372549 0.304348 0.143843 0.494624 0.255319 0.290323 0.135184
1223 1610612762 21500279 31 72 0.431 14 33 0.424 18 24 ... UTA ORL 0.527778 0.138889 0.250000 0.196769 0.494382 0.209302 0.168539 0.103520
1224 1610612762 21500259 40 89 0.449 6 19 0.316 17 22 ... UTA GSW 0.483146 0.243902 0.191011 0.082747 0.573171 0.358974 0.146341 0.167411
1225 1610612762 21500243 38 82 0.463 9 18 0.500 16 21 ... UTA NOP 0.518293 0.279070 0.195122 0.159168 0.456522 0.097561 0.347826 0.169851
1226 1610612762 21500208 28 73 0.384 5 19 0.263 28 40 ... UTA OKC 0.417808 0.302326 0.383562 0.212982 0.616883 0.176471 0.207792 0.168563
1227 1610612762 21500173 35 72 0.486 7 22 0.318 16 22 ... UTA TOR 0.534722 0.200000 0.222222 0.185428 0.456250 0.209302 0.200000 0.150667
1228 1610612762 21500091 31 74 0.419 12 27 0.444 15 18 ... UTA MEM 0.500000 0.225000 0.202703 0.223595 0.362637 0.245283 0.142857 0.142624
1229 1610612762 21500068 33 88 0.375 5 24 0.208 21 33 ... UTA POR 0.403409 0.313725 0.238636 0.094221 0.603896 0.351351 0.194805 0.195715

1230 rows × 52 columns


In [4]:
#Gets and filters games
games_2014 = sched_2014.get_games()
games_2015 = sched_2015.get_games()
#games_2014 = games_2014.sort_values(by='GAME_DATE').reset_index(drop=True).ix[100:, :]
#games_2015 = games_2015.sort_values(by='GAME_DATE').reset_index(drop=True).ix[100:, :]

In [ ]:
games_2014.columns

In [16]:
#Creates ELO scores
games = games_2014.append(games_2015).reset_index(drop=True)
elo = ELO(games, 'GAME_DATE', 'Home Team', 'Away Team', 'PTS_home', 'PTS_away')
elo_data = elo.create_elo(1500, 20, 100, '538')
elo_list = []
for tm in elo_data.columns.values:
    elo_list.append(elo_data[tm])
elo_list


Out[16]:
[2014-10-28       1500
 2014-10-29    1499.47
 2014-10-30    1499.47
 2014-10-31    1500.74
 2014-11-01    1499.54
 2014-11-02    1499.54
 2014-11-03    1499.54
 2014-11-04    1498.82
 2014-11-05    1499.72
 2014-11-06    1499.72
 2014-11-07    1499.12
 2014-11-08    1499.55
 2014-11-09    1499.55
 2014-11-10    1499.55
 2014-11-11    1500.47
 2014-11-12    1500.47
 2014-11-13    1500.47
 2014-11-14    1498.94
 2014-11-15    1498.94
 2014-11-16    1498.16
 2014-11-17    1498.16
 2014-11-18    1498.85
 2014-11-19    1498.26
 2014-11-20    1498.26
 2014-11-21    1495.24
 2014-11-22    1496.25
 2014-11-23    1496.25
 2014-11-24    1496.25
 2014-11-25    1497.52
 2014-11-26    1496.16
                ...   
 2016-03-14    1487.75
 2016-03-15    1489.14
 2016-03-16    1489.14
 2016-03-17    1490.29
 2016-03-18    1490.29
 2016-03-19    1490.29
 2016-03-20    1491.19
 2016-03-21    1490.75
 2016-03-22    1490.75
 2016-03-23    1489.71
 2016-03-24    1489.71
 2016-03-25    1488.54
 2016-03-26    1490.25
 2016-03-27    1490.25
 2016-03-28    1490.25
 2016-03-29    1490.25
 2016-03-30    1491.44
 2016-03-31    1491.44
 2016-04-01    1492.05
 2016-04-02    1492.05
 2016-04-03    1492.63
 2016-04-05    1494.57
 2016-04-06    1494.57
 2016-04-07    1494.57
 2016-04-08    1493.12
 2016-04-09    1493.12
 2016-04-10    1492.75
 2016-04-11    1491.69
 2016-04-12    1491.69
 2016-04-13    1492.33
 Name: MIL, dtype: object, 2014-10-28       1500
 2014-10-29    1498.59
 2014-10-30    1498.59
 2014-10-31    1498.59
 2014-11-01    1500.56
 2014-11-02    1499.91
 2014-11-03    1499.91
 2014-11-04    1499.91
 2014-11-05     1501.5
 2014-11-06     1501.5
 2014-11-07     1501.5
 2014-11-08    1500.48
 2014-11-09    1499.22
 2014-11-10    1499.22
 2014-11-11    1500.35
 2014-11-12    1500.35
 2014-11-13    1501.34
 2014-11-14    1501.34
 2014-11-15    1503.42
 2014-11-16    1501.85
 2014-11-17    1501.85
 2014-11-18    1501.85
 2014-11-19    1501.85
 2014-11-20    1501.85
 2014-11-21    1503.18
 2014-11-22    1503.18
 2014-11-23    1502.54
 2014-11-24    1502.54
 2014-11-25    1501.18
 2014-11-26    1499.94
                ...   
 2016-03-14    1517.26
 2016-03-15    1517.26
 2016-03-16    1519.93
 2016-03-17    1519.93
 2016-03-18    1518.54
 2016-03-19    1517.55
 2016-03-20    1517.55
 2016-03-21    1516.91
 2016-03-22    1516.91
 2016-03-23    1518.42
 2016-03-24    1518.42
 2016-03-25     1519.4
 2016-03-26     1519.4
 2016-03-27    1520.62
 2016-03-28    1520.62
 2016-03-29     1521.6
 2016-03-30    1520.83
 2016-03-31    1520.83
 2016-04-01    1521.35
 2016-04-02    1521.35
 2016-04-03    1523.41
 2016-04-05    1524.21
 2016-04-06    1524.21
 2016-04-07     1525.4
 2016-04-08     1525.4
 2016-04-09    1525.03
 2016-04-10    1524.32
 2016-04-11    1524.32
 2016-04-12    1524.32
 2016-04-13    1526.13
 Name: GSW, dtype: object, 2014-10-28       1500
 2014-10-29    1499.31
 2014-10-30    1500.15
 2014-10-31    1500.15
 2014-11-01    1500.53
 2014-11-02    1500.53
 2014-11-03    1500.53
 2014-11-04    1500.53
 2014-11-05    1499.75
 2014-11-06    1499.75
 2014-11-07    1498.69
 2014-11-08    1497.56
 2014-11-09    1497.56
 2014-11-10    1497.56
 2014-11-11    1497.56
 2014-11-12    1498.64
 2014-11-13    1498.64
 2014-11-14    1495.28
 2014-11-15    1493.89
 2014-11-16    1493.89
 2014-11-17    1493.89
 2014-11-18    1493.89
 2014-11-19    1495.43
 2014-11-20    1495.43
 2014-11-21    1497.41
 2014-11-22    1498.48
 2014-11-23    1498.48
 2014-11-24    1498.48
 2014-11-25    1498.48
 2014-11-26    1499.84
                ...   
 2016-03-14     1488.3
 2016-03-15     1488.3
 2016-03-16    1487.57
 2016-03-17    1487.57
 2016-03-18    1486.81
 2016-03-19    1486.81
 2016-03-20    1486.81
 2016-03-21    1487.45
 2016-03-22    1487.45
 2016-03-23    1488.51
 2016-03-24    1488.51
 2016-03-25    1487.99
 2016-03-26    1488.88
 2016-03-27    1488.88
 2016-03-28    1489.64
 2016-03-29    1489.64
 2016-03-30    1491.14
 2016-03-31    1491.14
 2016-04-01    1489.82
 2016-04-02    1489.82
 2016-04-03    1490.77
 2016-04-05    1489.98
 2016-04-06    1489.98
 2016-04-07    1489.13
 2016-04-08    1489.13
 2016-04-09    1488.75
 2016-04-10    1488.75
 2016-04-11    1490.46
 2016-04-12    1490.46
 2016-04-13    1493.13
 Name: MIN, dtype: object, 2014-10-28       1500
 2014-10-29    1501.26
 2014-10-30    1501.26
 2014-10-31    1501.26
 2014-11-01    1499.86
 2014-11-02    1500.62
 2014-11-03    1500.62
 2014-11-04    1501.98
 2014-11-05    1501.07
 2014-11-06    1501.07
 2014-11-07    1501.07
 2014-11-08    1502.19
 2014-11-09    1501.29
 2014-11-10    1501.29
 2014-11-11    1501.29
 2014-11-12    1502.01
 2014-11-13    1502.01
 2014-11-14    1500.81
 2014-11-15    1500.81
 2014-11-16    1501.59
 2014-11-17    1500.51
 2014-11-18    1500.51
 2014-11-19    1500.51
 2014-11-20    1501.87
 2014-11-21    1501.87
 2014-11-22    1501.09
 2014-11-23    1501.53
 2014-11-24    1501.53
 2014-11-25    1502.88
 2014-11-26    1502.88
                ...   
 2016-03-14     1493.2
 2016-03-15     1493.2
 2016-03-16     1493.2
 2016-03-17    1493.71
 2016-03-18    1493.71
 2016-03-19    1495.59
 2016-03-20    1495.59
 2016-03-21    1495.59
 2016-03-22     1494.4
 2016-03-23    1492.41
 2016-03-24    1492.41
 2016-03-25     1493.6
 2016-03-26     1493.6
 2016-03-27     1493.6
 2016-03-28     1494.8
 2016-03-29     1494.8
 2016-03-30    1494.27
 2016-03-31    1494.27
 2016-04-01    1493.56
 2016-04-02    1491.98
 2016-04-03    1491.98
 2016-04-05    1493.65
 2016-04-06    1493.65
 2016-04-07    1494.64
 2016-04-08    1494.03
 2016-04-09    1494.03
 2016-04-10    1495.93
 2016-04-11    1495.93
 2016-04-12    1495.21
 2016-04-13    1494.09
 Name: MIA, dtype: object, 2014-10-28       1500
 2014-10-29    1499.09
 2014-10-30    1499.09
 2014-10-31    1499.09
 2014-11-01    1500.22
 2014-11-02    1500.22
 2014-11-03    1500.22
 2014-11-04    1500.22
 2014-11-05    1499.69
 2014-11-06    1499.69
 2014-11-07    1499.08
 2014-11-08       1500
 2014-11-09       1500
 2014-11-10    1499.28
 2014-11-11    1499.28
 2014-11-12    1499.89
 2014-11-13    1499.89
 2014-11-14    1501.09
 2014-11-15    1498.54
 2014-11-16    1498.54
 2014-11-17    1498.54
 2014-11-18    1499.19
 2014-11-19    1499.19
 2014-11-20    1499.19
 2014-11-21    1500.31
 2014-11-22    1500.31
 2014-11-23    1500.31
 2014-11-24    1500.31
 2014-11-25    1499.73
 2014-11-26    1500.74
                ...   
 2016-03-14    1513.48
 2016-03-15    1513.48
 2016-03-16    1512.91
 2016-03-17    1514.53
 2016-03-18    1514.53
 2016-03-19    1515.79
 2016-03-20    1515.79
 2016-03-21    1517.04
 2016-03-22    1517.04
 2016-03-23    1515.49
 2016-03-24    1515.49
 2016-03-25    1516.66
 2016-03-26    1515.32
 2016-03-27    1515.32
 2016-03-28    1514.88
 2016-03-29    1514.88
 2016-03-30    1513.88
 2016-03-31    1513.88
 2016-04-01    1514.33
 2016-04-02    1514.33
 2016-04-03    1514.33
 2016-04-05    1515.63
 2016-04-06    1515.63
 2016-04-07     1516.6
 2016-04-08     1516.6
 2016-04-09    1517.79
 2016-04-10    1517.79
 2016-04-11    1516.32
 2016-04-12    1516.32
 2016-04-13    1515.11
 Name: ATL, dtype: object, 2014-10-28       1500
 2014-10-29    1501.53
 2014-10-30    1501.53
 2014-10-31    1501.53
 2014-11-01    1500.13
 2014-11-02    1500.13
 2014-11-03    1499.36
 2014-11-04    1499.36
 2014-11-05    1499.88
 2014-11-06    1499.88
 2014-11-07    1500.49
 2014-11-08    1499.84
 2014-11-09    1499.84
 2014-11-10    1499.84
 2014-11-11    1499.84
 2014-11-12    1501.09
 2014-11-13    1501.09
 2014-11-14    1501.46
 2014-11-15    1501.46
 2014-11-16    1501.46
 2014-11-17    1502.05
 2014-11-18    1502.05
 2014-11-19    1501.03
 2014-11-20    1501.03
 2014-11-21    1499.44
 2014-11-22    1499.44
 2014-11-23    1500.15
 2014-11-24    1500.15
 2014-11-25    1500.15
 2014-11-26    1500.15
                ...   
 2016-03-14    1508.87
 2016-03-15     1508.1
 2016-03-16    1509.66
 2016-03-17    1509.66
 2016-03-18    1508.26
 2016-03-19    1508.26
 2016-03-20    1507.03
 2016-03-21    1508.21
 2016-03-22    1508.21
 2016-03-23    1509.47
 2016-03-24    1509.47
 2016-03-25    1509.47
 2016-03-26    1508.97
 2016-03-27    1508.97
 2016-03-28    1506.93
 2016-03-29    1506.93
 2016-03-30    1506.93
 2016-03-31    1506.02
 2016-04-01    1505.49
 2016-04-02    1505.49
 2016-04-03    1504.72
 2016-04-05    1504.72
 2016-04-06    1505.63
 2016-04-07    1505.63
 2016-04-08    1507.08
 2016-04-09    1505.89
 2016-04-10    1505.89
 2016-04-11    1507.09
 2016-04-12    1507.09
 2016-04-13    1508.21
 Name: BOS, dtype: object, 2014-10-28       1500
 2014-10-29    1498.87
 2014-10-30    1498.03
 2014-10-31    1498.03
 2014-11-01    1499.11
 2014-11-02    1499.11
 2014-11-03    1499.11
 2014-11-04    1499.11
 2014-11-05    1499.72
 2014-11-06    1499.72
 2014-11-07    1500.33
 2014-11-08    1500.33
 2014-11-09     1500.7
 2014-11-10     1499.5
 2014-11-11     1499.5
 2014-11-12    1498.81
 2014-11-13    1498.81
 2014-11-14    1498.03
 2014-11-15    1497.12
 2014-11-16    1497.12
 2014-11-17    1498.31
 2014-11-18    1498.31
 2014-11-19    1498.76
 2014-11-20    1498.76
 2014-11-21    1497.63
 2014-11-22    1497.63
 2014-11-23    1497.63
 2014-11-24    1497.63
 2014-11-25    1496.36
 2014-11-26    1497.08
                ...   
 2016-03-14    1492.13
 2016-03-15    1492.13
 2016-03-16     1492.7
 2016-03-17     1492.7
 2016-03-18    1493.62
 2016-03-19    1494.89
 2016-03-20    1494.89
 2016-03-21    1495.32
 2016-03-22    1495.32
 2016-03-23    1496.84
 2016-03-24    1496.84
 2016-03-25    1497.76
 2016-03-26     1499.1
 2016-03-27     1499.1
 2016-03-28     1499.1
 2016-03-29    1499.95
 2016-03-30    1499.95
 2016-03-31    1499.95
 2016-04-01    1500.85
 2016-04-02    1500.26
 2016-04-03    1500.26
 2016-04-05     1498.6
 2016-04-06    1498.01
 2016-04-07    1498.01
 2016-04-08    1499.35
 2016-04-09    1499.35
 2016-04-10    1499.35
 2016-04-11    1499.35
 2016-04-12    1500.07
 2016-04-13    1499.62
 Name: DET, dtype: object, 2014-10-28       1500
 2014-10-29    1501.72
 2014-10-30    1501.07
 2014-10-31    1501.07
 2014-11-01    1501.07
 2014-11-02    1501.68
 2014-11-03    1501.68
 2014-11-04    1502.93
 2014-11-05    1502.32
 2014-11-06    1502.32
 2014-11-07    1501.12
 2014-11-08    1500.21
 2014-11-09    1500.21
 2014-11-10    1500.92
 2014-11-11    1500.92
 2014-11-12    1501.37
 2014-11-13    1501.37
 2014-11-14    1501.82
 2014-11-15    1501.82
 2014-11-16    1503.34
 2014-11-17    1503.34
 2014-11-18    1502.65
 2014-11-19    1501.11
 2014-11-20    1501.11
 2014-11-21    1501.11
 2014-11-22    1502.09
 2014-11-23    1502.09
 2014-11-24    1501.32
 2014-11-25    1501.32
 2014-11-26    1500.41
                ...   
 2016-03-14    1496.42
 2016-03-15    1496.42
 2016-03-16    1493.75
 2016-03-17    1493.75
 2016-03-18    1493.75
 2016-03-19    1492.63
 2016-03-20    1493.47
 2016-03-21    1493.47
 2016-03-22    1493.47
 2016-03-23    1492.62
 2016-03-24     1493.9
 2016-03-25     1493.9
 2016-03-26    1495.07
 2016-03-27    1495.07
 2016-03-28    1494.09
 2016-03-29    1494.09
 2016-03-30    1493.57
 2016-03-31    1493.57
 2016-04-01    1494.96
 2016-04-02    1494.96
 2016-04-03    1495.61
 2016-04-05    1495.61
 2016-04-06     1496.8
 2016-04-07     1496.8
 2016-04-08    1496.03
 2016-04-09    1496.03
 2016-04-10    1496.61
 2016-04-11    1496.61
 2016-04-12    1495.36
 2016-04-13    1495.36
 Name: NYK, dtype: object, 2014-10-28       1500
 2014-10-29    1501.13
 2014-10-30    1501.13
 2014-10-31    1501.13
 2014-11-01    1499.93
 2014-11-02    1499.93
 2014-11-03    1500.58
 2014-11-04    1500.58
 2014-11-05    1498.68
 2014-11-06    1498.68
 2014-11-07    1499.58
 2014-11-08    1499.58
 2014-11-09    1498.06
 2014-11-10    1498.06
 2014-11-11    1498.06
 2014-11-12     1499.4
 2014-11-13     1499.4
 2014-11-14    1497.83
 2014-11-15    1497.83
 2014-11-16    1496.31
 2014-11-17    1495.41
 2014-11-18    1495.41
 2014-11-19    1496.32
 2014-11-20    1496.32
 2014-11-21    1498.11
 2014-11-22    1498.11
 2014-11-23    1497.33
 2014-11-24    1497.33
 2014-11-25     1498.1
 2014-11-26    1497.11
                ...   
 2016-03-14    1493.38
 2016-03-15    1492.54
 2016-03-16    1492.54
 2016-03-17    1490.92
 2016-03-18    1490.92
 2016-03-19    1490.07
 2016-03-20    1490.07
 2016-03-21    1487.57
 2016-03-22    1487.57
 2016-03-23    1488.01
 2016-03-24    1488.01
 2016-03-25    1486.99
 2016-03-26    1486.99
 2016-03-27    1485.54
 2016-03-28    1486.43
 2016-03-29    1486.43
 2016-03-30    1485.84
 2016-03-31       1485
 2016-04-01       1485
 2016-04-02     1485.9
 2016-04-03     1485.9
 2016-04-05    1487.49
 2016-04-06    1487.49
 2016-04-07    1487.49
 2016-04-08    1488.19
 2016-04-09    1488.19
 2016-04-10    1489.48
 2016-04-11    1489.48
 2016-04-12    1489.48
 2016-04-13     1488.5
 Name: DEN, dtype: object, 2014-10-28    1499.56
 2014-10-29    1499.56
 2014-10-30    1501.22
 2014-10-31    1501.22
 2014-11-01    1500.57
 2014-11-02    1500.57
 2014-11-03    1501.33
 2014-11-04    1501.33
 2014-11-05    1501.33
 2014-11-06    1499.49
 2014-11-07    1497.82
 2014-11-08    1497.82
 2014-11-09    1498.71
 2014-11-10    1498.71
 2014-11-11     1499.7
 2014-11-12     1499.7
 2014-11-13    1503.33
 2014-11-14    1503.33
 2014-11-15    1504.72
 2014-11-16    1504.72
 2014-11-17    1502.85
 2014-11-18    1502.85
 2014-11-19    1502.34
 2014-11-20    1502.34
 2014-11-21    1504.94
 2014-11-22    1504.32
 2014-11-23    1504.32
 2014-11-24    1505.34
 2014-11-25    1505.34
 2014-11-26    1506.26
                ...   
 2016-03-14    1505.92
 2016-03-15    1505.92
 2016-03-16    1505.48
 2016-03-17    1505.48
 2016-03-18    1506.88
 2016-03-19    1506.88
 2016-03-20    1508.14
 2016-03-21    1508.14
 2016-03-22    1508.14
 2016-03-23     1507.3
 2016-03-24     1507.3
 2016-03-25    1506.32
 2016-03-26    1506.32
 2016-03-27    1504.39
 2016-03-28     1503.5
 2016-03-29     1503.5
 2016-03-30    1504.02
 2016-03-31    1504.02
 2016-04-01    1503.12
 2016-04-02    1503.12
 2016-04-03    1502.17
 2016-04-05    1502.17
 2016-04-06     1502.7
 2016-04-07     1502.7
 2016-04-08    1503.83
 2016-04-09    1503.83
 2016-04-10    1502.92
 2016-04-11    1502.02
 2016-04-12    1502.02
 2016-04-13    1502.66
 Name: DAL, dtype: object, 2014-10-28       1500
 2014-10-29    1498.47
 2014-10-30    1498.47
 2014-10-31    1498.47
 2014-11-01    1497.39
 2014-11-02    1497.39
 2014-11-03    1499.83
 2014-11-04    1499.83
 2014-11-05    1500.61
 2014-11-06    1500.61
 2014-11-07    1501.81
 2014-11-08    1501.81
 2014-11-09    1502.79
 2014-11-10    1502.79
 2014-11-11    1502.79
 2014-11-12    1501.81
 2014-11-13    1500.82
 2014-11-14    1500.82
 2014-11-15     1499.7
 2014-11-16     1499.7
 2014-11-17    1500.77
 2014-11-18    1500.77
 2014-11-19    1501.36
 2014-11-20    1501.36
 2014-11-21    1500.91
 2014-11-22    1499.64
 2014-11-23    1499.64
 2014-11-24    1499.64
 2014-11-25    1499.64
 2014-11-26     1498.8
                ...   
 2016-03-14    1495.07
 2016-03-15    1496.65
 2016-03-16    1496.65
 2016-03-17    1495.12
 2016-03-18    1495.12
 2016-03-19    1493.85
 2016-03-20    1493.85
 2016-03-21    1493.85
 2016-03-22     1494.5
 2016-03-23     1494.5
 2016-03-24    1495.58
 2016-03-25    1495.58
 2016-03-26    1496.72
 2016-03-27    1496.72
 2016-03-28    1495.52
 2016-03-29     1492.9
 2016-03-30     1492.9
 2016-03-31    1491.15
 2016-04-01    1489.76
 2016-04-02    1489.76
 2016-04-03    1491.22
 2016-04-05    1491.22
 2016-04-06    1489.57
 2016-04-07    1489.57
 2016-04-08    1488.18
 2016-04-09    1488.18
 2016-04-10    1486.19
 2016-04-11    1487.08
 2016-04-12    1487.08
 2016-04-13    1487.85
 Name: BKN, dtype: object, 2014-10-28       1500
 2014-10-29    1501.59
 2014-10-30    1501.59
 2014-10-31    1500.53
 2014-11-01    1500.53
 2014-11-02    1501.19
 2014-11-03    1501.19
 2014-11-04     1502.9
 2014-11-05     1502.9
 2014-11-06    1504.74
 2014-11-07    1504.74
 2014-11-08    1504.05
 2014-11-09    1505.57
 2014-11-10    1505.57
 2014-11-11     1506.1
 2014-11-12    1504.75
 2014-11-13    1504.75
 2014-11-14    1504.75
 2014-11-15    1505.87
 2014-11-16    1505.87
 2014-11-17    1506.93
 2014-11-18    1506.93
 2014-11-19    1506.93
 2014-11-20    1506.93
 2014-11-21    1508.57
 2014-11-22    1508.57
 2014-11-23    1507.86
 2014-11-24    1506.91
 2014-11-25    1506.91
 2014-11-26    1506.07
                ...   
 2016-03-14    1505.53
 2016-03-15    1505.53
 2016-03-16    1505.53
 2016-03-17    1504.54
 2016-03-18     1503.9
 2016-03-19     1503.9
 2016-03-20    1502.64
 2016-03-21    1502.64
 2016-03-22    1502.64
 2016-03-23    1503.48
 2016-03-24    1502.95
 2016-03-25    1502.95
 2016-03-26    1503.55
 2016-03-27    1503.55
 2016-03-28    1504.81
 2016-03-29    1504.81
 2016-03-30    1504.81
 2016-03-31    1505.72
 2016-04-01    1505.72
 2016-04-02     1507.3
 2016-04-03    1505.24
 2016-04-05    1504.41
 2016-04-06    1505.18
 2016-04-07    1505.18
 2016-04-08    1505.18
 2016-04-09    1505.55
 2016-04-10    1505.55
 2016-04-11    1505.55
 2016-04-12    1505.55
 2016-04-13    1506.53
 Name: POR, dtype: object, 2014-10-28       1500
 2014-10-29    1498.41
 2014-10-30     1497.8
 2014-10-31     1497.8
 2014-11-01       1499
 2014-11-02       1499
 2014-11-03    1496.56
 2014-11-04     1495.3
 2014-11-05     1495.3
 2014-11-06     1495.3
 2014-11-07    1495.75
 2014-11-08    1495.75
 2014-11-09    1496.74
 2014-11-10    1496.74
 2014-11-11    1495.83
 2014-11-12    1494.58
 2014-11-13    1494.58
 2014-11-14    1495.35
 2014-11-15    1495.35
 2014-11-16    1495.94
 2014-11-17    1495.94
 2014-11-18    1494.35
 2014-11-19    1493.44
 2014-11-20    1493.44
 2014-11-21    1493.88
 2014-11-22    1493.88
 2014-11-23    1494.53
 2014-11-24    1494.53
 2014-11-25    1494.53
 2014-11-26       1496
                ...   
 2016-03-14    1514.78
 2016-03-15    1514.78
 2016-03-16    1513.22
 2016-03-17    1513.22
 2016-03-18    1512.06
 2016-03-19    1511.47
 2016-03-20    1511.47
 2016-03-21    1511.47
 2016-03-22    1512.15
 2016-03-23    1512.15
 2016-03-24    1514.04
 2016-03-25    1514.04
 2016-03-26    1515.76
 2016-03-27    1515.76
 2016-03-28    1514.31
 2016-03-29    1513.46
 2016-03-30    1513.46
 2016-03-31    1513.98
 2016-04-01    1513.98
 2016-04-02    1513.98
 2016-04-03    1512.98
 2016-04-05    1511.39
 2016-04-06    1510.62
 2016-04-07    1510.62
 2016-04-08    1510.62
 2016-04-09    1510.09
 2016-04-10    1510.09
 2016-04-11    1512.59
 2016-04-12     1511.9
 2016-04-13     1511.9
 Name: OKC, dtype: object, 2014-10-28       1500
 2014-10-29    1500.91
 2014-10-30    1500.91
 2014-10-31    1500.91
 2014-11-01    1499.78
 2014-11-02    1499.02
 2014-11-03    1499.02
 2014-11-04    1500.28
 2014-11-05    1499.76
 2014-11-06    1499.76
 2014-11-07    1501.48
 2014-11-08    1501.48
 2014-11-09    1503.97
 2014-11-10    1503.97
 2014-11-11    1504.65
 2014-11-12    1504.65
 2014-11-13    1505.43
 2014-11-14    1505.43
 2014-11-15    1507.08
 2014-11-16    1507.08
 2014-11-17    1507.08
 2014-11-18    1507.08
 2014-11-19    1507.77
 2014-11-20    1507.77
 2014-11-21    1510.79
 2014-11-22    1509.44
 2014-11-23    1509.44
 2014-11-24    1510.12
 2014-11-25    1510.12
 2014-11-26    1509.11
                ...   
 2016-03-14    1504.56
 2016-03-15    1503.17
 2016-03-16    1503.17
 2016-03-17    1502.39
 2016-03-18     1503.8
 2016-03-19     1503.8
 2016-03-20    1504.55
 2016-03-21    1504.55
 2016-03-22    1504.55
 2016-03-23    1503.29
 2016-03-24    1503.29
 2016-03-25    1502.68
 2016-03-26    1500.97
 2016-03-27    1500.97
 2016-03-28    1502.42
 2016-03-29    1502.42
 2016-03-30    1503.42
 2016-03-31    1503.42
 2016-04-01    1502.83
 2016-04-02    1501.92
 2016-04-03    1501.92
 2016-04-05    1502.76
 2016-04-06    1502.76
 2016-04-07    1501.78
 2016-04-08    1503.13
 2016-04-09    1503.13
 2016-04-10    1502.54
 2016-04-11    1502.54
 2016-04-12    1504.54
 2016-04-13    1503.77
 Name: TOR, dtype: object, 2014-10-28       1500
 2014-10-29    1498.28
 2014-10-30    1498.28
 2014-10-31    1498.99
 2014-11-01    1498.62
 2014-11-02    1498.62
 2014-11-03    1498.62
 2014-11-04     1499.6
 2014-11-05     1498.7
 2014-11-06     1498.7
 2014-11-07    1498.19
 2014-11-08    1498.84
 2014-11-09    1498.84
 2014-11-10    1500.03
 2014-11-11    1500.03
 2014-11-12    1500.03
 2014-11-13    1499.25
 2014-11-14    1499.25
 2014-11-15    1500.15
 2014-11-16    1500.15
 2014-11-17    1498.85
 2014-11-18    1498.85
 2014-11-19    1498.85
 2014-11-20    1497.39
 2014-11-21    1495.75
 2014-11-22    1495.75
 2014-11-23    1495.75
 2014-11-24     1495.3
 2014-11-25    1494.53
 2014-11-26    1494.53
                ...   
 2016-03-14    1499.48
 2016-03-15    1499.48
 2016-03-16    1497.64
 2016-03-17    1499.17
 2016-03-18    1499.17
 2016-03-19    1500.09
 2016-03-20    1500.09
 2016-03-21    1500.99
 2016-03-22    1500.99
 2016-03-23    1501.84
 2016-03-24    1500.56
 2016-03-25    1500.56
 2016-03-26    1498.64
 2016-03-27    1498.64
 2016-03-28    1499.08
 2016-03-29    1498.63
 2016-03-30    1498.63
 2016-03-31    1498.11
 2016-04-01    1498.11
 2016-04-02    1498.69
 2016-04-03    1498.11
 2016-04-05     1496.6
 2016-04-06     1496.6
 2016-04-07    1495.61
 2016-04-08    1495.61
 2016-04-09    1496.22
 2016-04-10    1496.22
 2016-04-11    1495.57
 2016-04-12    1495.57
 2016-04-13    1496.69
 Name: CHI, dtype: object, 2014-10-28    1500.44
 2014-10-29    1500.44
 2014-10-30    1500.44
 2014-10-31    1499.68
 2014-11-01    1499.68
 2014-11-02    1499.68
 2014-11-03    1499.68
 2014-11-04    1499.68
 2014-11-05     1500.2
 2014-11-06     1498.6
 2014-11-07     1498.6
 2014-11-08    1498.98
 2014-11-09    1498.98
 2014-11-10    1498.39
 2014-11-11    1497.26
 2014-11-12    1497.26
 2014-11-13    1497.26
 2014-11-14    1496.12
 2014-11-15    1495.51
 2014-11-16    1495.51
 2014-11-17     1497.6
 2014-11-18     1497.6
 2014-11-19    1497.15
 2014-11-20    1497.15
 2014-11-21    1495.17
 2014-11-22    1496.45
 2014-11-23    1496.45
 2014-11-24    1496.45
 2014-11-25    1496.45
 2014-11-26    1497.29
                ...   
 2016-03-14    1509.57
 2016-03-15    1511.41
 2016-03-16    1511.41
 2016-03-17    1512.39
 2016-03-18    1512.39
 2016-03-19    1513.38
 2016-03-20    1513.38
 2016-03-21    1512.77
 2016-03-22    1512.77
 2016-03-23    1514.76
 2016-03-24    1514.76
 2016-03-25    1515.59
 2016-03-26    1513.87
 2016-03-27    1513.87
 2016-03-28    1512.69
 2016-03-29    1512.69
 2016-03-30    1513.66
 2016-03-31    1513.66
 2016-04-01    1513.66
 2016-04-02    1514.57
 2016-04-03    1514.57
 2016-04-05    1514.12
 2016-04-06    1514.12
 2016-04-07    1512.94
 2016-04-08    1512.24
 2016-04-09    1512.24
 2016-04-10    1512.94
 2016-04-11    1512.94
 2016-04-12    1513.63
 2016-04-13    1512.99
 Name: SAS, dtype: object, 2014-10-28       1500
 2014-10-29    1500.53
 2014-10-30    1500.53
 2014-10-31    1500.53
 2014-11-01    1500.97
 2014-11-02    1500.37
 2014-11-03    1500.37
 2014-11-04    1499.31
 2014-11-05    1500.22
 2014-11-06    1500.22
 2014-11-07    1500.83
 2014-11-08    1500.83
 2014-11-09    1499.37
 2014-11-10    1499.37
 2014-11-11    1498.84
 2014-11-12    1498.84
 2014-11-13    1498.84
 2014-11-14       1498
 2014-11-15    1495.92
 2014-11-16    1495.92
 2014-11-17    1497.79
 2014-11-18    1497.79
 2014-11-19    1497.26
 2014-11-20    1497.26
 2014-11-21    1497.91
 2014-11-22    1497.91
 2014-11-23    1497.48
 2014-11-24    1499.04
 2014-11-25    1499.04
 2014-11-26    1499.88
                ...   
 2016-03-14     1497.8
 2016-03-15     1497.8
 2016-03-16    1498.78
 2016-03-17    1498.27
 2016-03-18    1498.27
 2016-03-19    1499.11
 2016-03-20    1499.11
 2016-03-21    1499.73
 2016-03-22    1499.08
 2016-03-23    1499.08
 2016-03-24    1499.08
 2016-03-25    1498.16
 2016-03-26    1496.45
 2016-03-27    1496.45
 2016-03-28    1496.45
 2016-03-29    1495.22
 2016-03-30    1495.22
 2016-03-31    1495.22
 2016-04-01    1496.27
 2016-04-02    1496.27
 2016-04-03    1495.23
 2016-04-05    1494.39
 2016-04-06     1493.2
 2016-04-07     1493.2
 2016-04-08    1494.59
 2016-04-09    1494.59
 2016-04-10    1493.14
 2016-04-11    1491.93
 2016-04-12    1491.93
 2016-04-13    1493.33
 Name: CHA, dtype: object, 2014-10-28       1500
 2014-10-29    1501.02
 2014-10-30    1499.36
 2014-10-31    1499.36
 2014-11-01    1501.57
 2014-11-02    1501.57
 2014-11-03    1500.73
 2014-11-04    1500.73
 2014-11-05    1501.25
 2014-11-06    1501.25
 2014-11-07    1502.93
 2014-11-08    1502.93
 2014-11-09    1502.56
 2014-11-10    1501.36
 2014-11-11    1501.36
 2014-11-12    1500.75
 2014-11-13    1500.75
 2014-11-14     1500.3
 2014-11-15    1498.65
 2014-11-16    1498.65
 2014-11-17    1498.65
 2014-11-18    1500.24
 2014-11-19    1500.24
 2014-11-20    1500.24
 2014-11-21    1498.91
 2014-11-22    1499.99
 2014-11-23    1499.99
 2014-11-24    1500.44
 2014-11-25    1500.44
 2014-11-26    1498.96
                ...   
 2016-03-14    1500.05
 2016-03-15    1500.05
 2016-03-16    1500.05
 2016-03-17    1502.62
 2016-03-18    1502.62
 2016-03-19    1501.71
 2016-03-20    1500.81
 2016-03-21    1500.81
 2016-03-22    1500.81
 2016-03-23    1500.36
 2016-03-24    1498.48
 2016-03-25    1498.48
 2016-03-26    1497.59
 2016-03-27    1497.59
 2016-03-28    1500.94
 2016-03-29    1500.94
 2016-03-30     1501.7
 2016-03-31     1501.7
 2016-04-01    1503.02
 2016-04-02    1503.02
 2016-04-03     1501.8
 2016-04-05    1502.24
 2016-04-06    1502.24
 2016-04-07    1502.24
 2016-04-08    1502.76
 2016-04-09    1502.76
 2016-04-10    1501.47
 2016-04-11    1502.37
 2016-04-12    1502.37
 2016-04-13    1501.59
 Name: UTA, dtype: object, 2014-10-28       1500
 2014-10-29       1500
 2014-10-30    1500.65
 2014-10-31    1499.94
 2014-11-01    1499.94
 2014-11-02    1499.94
 2014-11-03    1499.94
 2014-11-04    1498.22
 2014-11-05     1497.7
 2014-11-06     1497.7
 2014-11-07    1496.79
 2014-11-08    1496.79
 2014-11-09    1496.79
 2014-11-10    1497.71
 2014-11-11    1497.71
 2014-11-12    1497.71
 2014-11-13    1497.71
 2014-11-14    1497.34
 2014-11-15    1499.89
 2014-11-16    1499.89
 2014-11-17     1500.8
 2014-11-18     1500.8
 2014-11-19    1501.25
 2014-11-20    1501.25
 2014-11-21    1499.91
 2014-11-22    1501.25
 2014-11-23    1501.25
 2014-11-24    1503.74
 2014-11-25    1503.74
 2014-11-26    1505.88
                ...   
 2016-03-14     1513.7
 2016-03-15     1513.7
 2016-03-16    1514.14
 2016-03-17    1514.14
 2016-03-18    1513.44
 2016-03-19    1511.56
 2016-03-20    1511.56
 2016-03-21    1514.06
 2016-03-22    1514.06
 2016-03-23     1515.1
 2016-03-24    1514.02
 2016-03-25    1514.02
 2016-03-26    1512.85
 2016-03-27    1512.85
 2016-03-28    1512.85
 2016-03-29    1513.57
 2016-03-30    1513.57
 2016-03-31    1515.32
 2016-04-01    1514.87
 2016-04-02    1514.87
 2016-04-03    1515.91
 2016-04-05    1513.97
 2016-04-06    1512.57
 2016-04-07    1512.57
 2016-04-08    1512.57
 2016-04-09    1511.95
 2016-04-10    1511.95
 2016-04-11    1513.42
 2016-04-12    1513.42
 2016-04-13    1513.88
 Name: CLE, dtype: object, 2014-10-28    1498.59
 2014-10-29    1497.57
 2014-10-30    1497.57
 2014-10-31    1497.57
 2014-11-01    1498.97
 2014-11-02    1498.97
 2014-11-03    1497.95
 2014-11-04    1496.59
 2014-11-05    1496.59
 2014-11-06    1498.19
 2014-11-07    1498.19
 2014-11-08    1499.21
 2014-11-09    1499.21
 2014-11-10    1499.21
 2014-11-11    1499.21
 2014-11-12    1498.13
 2014-11-13    1498.13
 2014-11-14    1498.57
 2014-11-15    1498.57
 2014-11-16    1497.99
 2014-11-17    1495.85
 2014-11-18    1495.85
 2014-11-19    1496.56
 2014-11-20    1496.56
 2014-11-21    1496.56
 2014-11-22    1497.17
 2014-11-23    1497.17
 2014-11-24    1497.94
 2014-11-25    1497.94
 2014-11-26    1499.28
                ...   
 2016-03-14    1500.57
 2016-03-15    1500.57
 2016-03-16    1501.87
 2016-03-17    1501.87
 2016-03-18    1502.63
 2016-03-19    1501.37
 2016-03-20    1501.37
 2016-03-21    1501.37
 2016-03-22    1500.69
 2016-03-23    1501.14
 2016-03-24    1501.14
 2016-03-25    1501.75
 2016-03-26    1501.75
 2016-03-27    1501.15
 2016-03-28    1501.15
 2016-03-29    1500.42
 2016-03-30    1500.42
 2016-03-31    1500.94
 2016-04-01    1500.94
 2016-04-02    1500.94
 2016-04-03    1501.94
 2016-04-05    1501.94
 2016-04-06    1501.41
 2016-04-07    1502.33
 2016-04-08    1502.33
 2016-04-09    1502.33
 2016-04-10    1504.09
 2016-04-11    1502.38
 2016-04-12    1502.38
 2016-04-13    1505.03
 Name: HOU, dtype: object, 2014-10-28       1500
 2014-10-29    1498.74
 2014-10-30    1497.96
 2014-10-31    1497.96
 2014-11-01    1499.16
 2014-11-02    1499.16
 2014-11-03    1499.16
 2014-11-04    1497.91
 2014-11-05    1498.43
 2014-11-06    1498.43
 2014-11-07    1496.72
 2014-11-08    1495.94
 2014-11-09    1495.94
 2014-11-10    1495.94
 2014-11-11    1495.94
 2014-11-12    1496.63
 2014-11-13    1496.63
 2014-11-14    1496.63
 2014-11-15    1497.39
 2014-11-16    1497.39
 2014-11-17    1497.39
 2014-11-18    1497.39
 2014-11-19    1497.91
 2014-11-20    1497.91
 2014-11-21    1499.24
 2014-11-22    1498.23
 2014-11-23    1498.23
 2014-11-24    1498.23
 2014-11-25    1498.81
 2014-11-26    1496.68
                ...   
 2016-03-14    1502.41
 2016-03-15    1502.41
 2016-03-16    1504.25
 2016-03-17     1503.6
 2016-03-18     1503.6
 2016-03-19    1504.72
 2016-03-20    1504.72
 2016-03-21    1503.47
 2016-03-22    1503.47
 2016-03-23    1505.02
 2016-03-24    1505.02
 2016-03-25    1505.54
 2016-03-26    1505.54
 2016-03-27    1504.42
 2016-03-28    1504.42
 2016-03-29    1503.45
 2016-03-30    1502.38
 2016-03-31    1502.38
 2016-04-01    1501.61
 2016-04-02    1501.61
 2016-04-03    1500.85
 2016-04-05    1500.85
 2016-04-06    1502.49
 2016-04-07    1502.49
 2016-04-08    1501.15
 2016-04-09    1501.15
 2016-04-10    1502.61
 2016-04-11    1501.72
 2016-04-12    1501.72
 2016-04-13    1502.93
 Name: WAS, dtype: object, 2014-10-28    1501.41
 2014-10-29    1499.63
 2014-10-30    1499.63
 2014-10-31    1500.41
 2014-11-01    1498.44
 2014-11-02    1498.44
 2014-11-03    1498.44
 2014-11-04    1499.15
 2014-11-05    1499.15
 2014-11-06    1499.15
 2014-11-07    1499.15
 2014-11-08    1499.15
 2014-11-09    1500.62
 2014-11-10    1500.62
 2014-11-11    1499.85
 2014-11-12    1498.94
 2014-11-13    1498.94
 2014-11-14    1500.08
 2014-11-15    1500.08
 2014-11-16    1501.64
 2014-11-17    1501.64
 2014-11-18    1500.99
 2014-11-19    1500.28
 2014-11-20    1500.28
 2014-11-21    1497.68
 2014-11-22    1497.68
 2014-11-23    1498.46
 2014-11-24    1498.46
 2014-11-25    1498.46
 2014-11-26    1499.17
                ...   
 2016-03-14    1488.58
 2016-03-15    1489.42
 2016-03-16    1489.42
 2016-03-17    1489.42
 2016-03-18    1490.07
 2016-03-19    1490.07
 2016-03-20    1490.07
 2016-03-21    1490.07
 2016-03-22       1491
 2016-03-23    1489.73
 2016-03-24    1489.73
 2016-03-25    1490.75
 2016-03-26    1490.75
 2016-03-27    1491.87
 2016-03-28    1488.52
 2016-03-29    1488.52
 2016-03-30    1489.05
 2016-03-31    1489.05
 2016-04-01    1489.05
 2016-04-02    1489.05
 2016-04-03    1489.82
 2016-04-05    1487.94
 2016-04-06    1488.89
 2016-04-07    1488.89
 2016-04-08     1487.9
 2016-04-09     1487.9
 2016-04-10    1486.15
 2016-04-11    1483.65
 2016-04-12    1483.65
 2016-04-13    1484.43
 Name: LAL, dtype: object, 2014-10-28       1500
 2014-10-29    1498.74
 2014-10-30    1498.74
 2014-10-31    1497.47
 2014-11-01    1498.88
 2014-11-02    1498.88
 2014-11-03     1499.9
 2014-11-04     1499.9
 2014-11-05    1500.34
 2014-11-06    1500.34
 2014-11-07    1500.86
 2014-11-08    1500.86
 2014-11-09    1498.37
 2014-11-10    1498.37
 2014-11-11    1498.37
 2014-11-12    1498.37
 2014-11-13    1494.75
 2014-11-14    1494.31
 2014-11-15    1494.31
 2014-11-16    1494.31
 2014-11-17    1492.23
 2014-11-18    1492.23
 2014-11-19    1493.24
 2014-11-20    1493.24
 2014-11-21    1495.06
 2014-11-22    1494.07
 2014-11-23    1494.07
 2014-11-24    1495.02
 2014-11-25    1495.02
 2014-11-26    1495.86
                ...   
 2016-03-14    1484.57
 2016-03-15       1483
 2016-03-16       1483
 2016-03-17    1483.64
 2016-03-18     1484.8
 2016-03-19     1484.8
 2016-03-20    1486.03
 2016-03-21    1484.53
 2016-03-22    1484.53
 2016-03-23    1484.09
 2016-03-24    1484.09
 2016-03-25    1484.09
 2016-03-26    1483.49
 2016-03-27    1482.27
 2016-03-28    1482.27
 2016-03-29     1483.5
 2016-03-30     1483.5
 2016-03-31     1483.5
 2016-04-01    1482.45
 2016-04-02    1483.56
 2016-04-03    1483.56
 2016-04-05    1484.97
 2016-04-06    1484.97
 2016-04-07    1484.97
 2016-04-08    1485.75
 2016-04-09    1485.75
 2016-04-10    1486.12
 2016-04-11    1486.12
 2016-04-12    1484.12
 2016-04-13    1483.01
 Name: PHI, dtype: object, 2014-10-28       1500
 2014-10-29    1500.69
 2014-10-30    1500.69
 2014-10-31    1499.85
 2014-11-01     1499.4
 2014-11-02     1499.4
 2014-11-03    1500.67
 2014-11-04    1500.67
 2014-11-05    1499.65
 2014-11-06    1499.65
 2014-11-07     1499.2
 2014-11-08    1498.76
 2014-11-09    1498.76
 2014-11-10    1498.76
 2014-11-11    1499.53
 2014-11-12    1499.53
 2014-11-13    1499.97
 2014-11-14    1499.97
 2014-11-15    1500.88
 2014-11-16    1500.88
 2014-11-17    1503.02
 2014-11-18    1503.02
 2014-11-19    1502.33
 2014-11-20    1502.33
 2014-11-21    1503.92
 2014-11-22    1503.92
 2014-11-23    1505.45
 2014-11-24    1505.45
 2014-11-25    1505.45
 2014-11-26    1504.74
                ...   
 2016-03-14    1509.08
 2016-03-15    1509.08
 2016-03-16    1509.81
 2016-03-17    1508.66
 2016-03-18    1508.66
 2016-03-19    1509.85
 2016-03-20    1509.85
 2016-03-21    1509.15
 2016-03-22    1508.22
 2016-03-23    1508.22
 2016-03-24    1508.22
 2016-03-25    1507.39
 2016-03-26    1507.39
 2016-03-27    1507.39
 2016-03-28    1508.57
 2016-03-29    1508.57
 2016-03-30    1509.17
 2016-03-31    1509.17
 2016-04-01    1509.76
 2016-04-02    1509.76
 2016-04-03    1508.47
 2016-04-05    1509.98
 2016-04-06    1509.98
 2016-04-07    1509.98
 2016-04-08    1508.85
 2016-04-09    1509.22
 2016-04-10    1509.22
 2016-04-11    1509.22
 2016-04-12    1507.07
 2016-04-13    1505.25
 Name: MEM, dtype: object, 2014-10-28       1500
 2014-10-29       1500
 2014-10-30    1500.61
 2014-10-31    1499.83
 2014-11-01    1499.83
 2014-11-02    1500.54
 2014-11-03    1501.38
 2014-11-04    1501.38
 2014-11-05    1499.79
 2014-11-06    1499.79
 2014-11-07    1499.79
 2014-11-08    1500.48
 2014-11-09    1500.48
 2014-11-10    1501.07
 2014-11-11    1501.07
 2014-11-12    1501.07
 2014-11-13    1501.07
 2014-11-14    1501.07
 2014-11-15     1502.4
 2014-11-16     1502.4
 2014-11-17    1503.71
 2014-11-18    1503.71
 2014-11-19    1501.99
 2014-11-20    1500.64
 2014-11-21    1500.64
 2014-11-22    1500.64
 2014-11-23    1499.11
 2014-11-24    1497.54
 2014-11-25    1497.54
 2014-11-26    1496.83
                ...   
 2016-03-14    1508.66
 2016-03-15    1506.82
 2016-03-16    1505.53
 2016-03-17    1505.53
 2016-03-18    1505.53
 2016-03-19    1504.33
 2016-03-20    1503.64
 2016-03-21    1503.64
 2016-03-22    1503.64
 2016-03-23    1502.13
 2016-03-24    1502.66
 2016-03-25    1502.66
 2016-03-26    1502.66
 2016-03-27     1504.1
 2016-03-28    1506.13
 2016-03-29    1506.13
 2016-03-30    1504.63
 2016-03-31    1504.11
 2016-04-01    1504.11
 2016-04-02    1504.11
 2016-04-03    1504.88
 2016-04-05    1506.75
 2016-04-06    1505.81
 2016-04-07    1505.81
 2016-04-08    1505.29
 2016-04-09    1505.29
 2016-04-10     1506.2
 2016-04-11     1506.2
 2016-04-12    1508.35
 2016-04-13    1507.27
 Name: LAC, dtype: object, 2014-10-28       1500
 2014-10-29    1501.41
 2014-10-30    1501.41
 2014-10-31    1502.47
 2014-11-01    1502.47
 2014-11-02    1501.75
 2014-11-03     1501.1
 2014-11-04     1501.1
 2014-11-05    1503.01
 2014-11-06    1503.01
 2014-11-07    1502.56
 2014-11-08    1502.56
 2014-11-09    1501.57
 2014-11-10    1501.57
 2014-11-11    1500.58
 2014-11-12    1500.58
 2014-11-13    1500.14
 2014-11-14    1500.14
 2014-11-15    1500.74
 2014-11-16    1500.74
 2014-11-17    1500.74
 2014-11-18    1501.46
 2014-11-19    1501.46
 2014-11-20    1502.92
 2014-11-21    1502.92
 2014-11-22    1501.84
 2014-11-23    1501.84
 2014-11-24    1501.84
 2014-11-25    1500.88
 2014-11-26    1499.55
                ...   
 2016-03-14     1492.9
 2016-03-15    1492.06
 2016-03-16     1493.3
 2016-03-17     1493.3
 2016-03-18    1492.39
 2016-03-19    1492.39
 2016-03-20    1491.55
 2016-03-21    1490.64
 2016-03-22    1490.64
 2016-03-23    1489.58
 2016-03-24    1489.58
 2016-03-25    1491.47
 2016-03-26    1491.47
 2016-03-27     1493.4
 2016-03-28    1492.15
 2016-03-29    1492.15
 2016-03-30    1493.22
 2016-03-31    1493.22
 2016-04-01    1493.93
 2016-04-02    1493.04
 2016-04-03    1493.04
 2016-04-05    1493.87
 2016-04-06    1493.87
 2016-04-07    1494.71
 2016-04-08    1494.71
 2016-04-09    1495.24
 2016-04-10    1495.24
 2016-04-11    1494.67
 2016-04-12    1494.67
 2016-04-13    1492.02
 Name: SAC, dtype: object, 2014-10-28    1498.41
 2014-10-29    1498.41
 2014-10-30    1499.19
 2014-10-31    1499.19
 2014-11-01    1500.32
 2014-11-02    1500.32
 2014-11-03    1500.32
 2014-11-04    1499.33
 2014-11-05    1498.88
 2014-11-06    1498.88
 2014-11-07    1499.94
 2014-11-08    1499.94
 2014-11-09    1498.96
 2014-11-10    1498.96
 2014-11-11    1498.27
 2014-11-12    1497.82
 2014-11-13    1497.82
 2014-11-14    1499.36
 2014-11-15    1498.59
 2014-11-16    1498.59
 2014-11-17     1497.4
 2014-11-18     1497.4
 2014-11-19    1499.12
 2014-11-20    1499.12
 2014-11-21    1498.47
 2014-11-22    1499.24
 2014-11-23    1499.24
 2014-11-24    1496.76
 2014-11-25    1496.76
 2014-11-26       1498
                ...   
 2016-03-14    1490.91
 2016-03-15    1491.75
 2016-03-16    1490.77
 2016-03-17    1490.77
 2016-03-18    1491.48
 2016-03-19    1491.48
 2016-03-20    1490.72
 2016-03-21    1489.54
 2016-03-22    1489.54
 2016-03-23    1488.02
 2016-03-24    1488.02
 2016-03-25    1486.83
 2016-03-26    1488.75
 2016-03-27    1488.75
 2016-03-28    1488.75
 2016-03-29    1491.37
 2016-03-30    1491.37
 2016-03-31    1489.83
 2016-04-01    1489.23
 2016-04-02    1489.23
 2016-04-03    1490.51
 2016-04-05    1490.51
 2016-04-06     1491.1
 2016-04-07     1491.1
 2016-04-08    1491.71
 2016-04-09    1491.71
 2016-04-10    1489.81
 2016-04-11    1490.87
 2016-04-12    1490.87
 2016-04-13    1489.47
 Name: ORL, dtype: object, 2014-10-28       1500
 2014-10-29    1501.78
 2014-10-30    1501.78
 2014-10-31    1502.55
 2014-11-01    1500.34
 2014-11-02    1500.34
 2014-11-03    1500.34
 2014-11-04    1499.62
 2014-11-05    1500.64
 2014-11-06    1500.64
 2014-11-07    1501.09
 2014-11-08    1501.09
 2014-11-09    1502.35
 2014-11-10    1502.35
 2014-11-11    1502.35
 2014-11-12    1503.34
 2014-11-13    1503.34
 2014-11-14    1504.18
 2014-11-15    1502.85
 2014-11-16    1502.85
 2014-11-17    1502.26
 2014-11-18    1502.26
 2014-11-19    1501.82
 2014-11-20    1501.82
 2014-11-21       1500
 2014-11-22    1498.33
 2014-11-23    1498.33
 2014-11-24    1497.65
 2014-11-25    1497.65
 2014-11-26    1498.63
                ...   
 2016-03-14     1485.6
 2016-03-15     1485.6
 2016-03-16     1485.6
 2016-03-17    1483.03
 2016-03-18    1482.38
 2016-03-19    1482.38
 2016-03-20    1482.38
 2016-03-21    1483.08
 2016-03-22    1483.08
 2016-03-23    1484.35
 2016-03-24    1484.35
 2016-03-25    1482.46
 2016-03-26    1482.96
 2016-03-27    1482.96
 2016-03-28     1482.2
 2016-03-29     1482.2
 2016-03-30    1481.01
 2016-03-31    1481.01
 2016-04-01    1481.78
 2016-04-02    1481.78
 2016-04-03    1483.01
 2016-04-05    1481.71
 2016-04-06    1481.71
 2016-04-07     1480.8
 2016-04-08     1480.8
 2016-04-09    1479.21
 2016-04-10    1479.21
 2016-04-11    1479.79
 2016-04-12    1479.79
 2016-04-13    1480.88
 Name: PHX, dtype: object, 2014-10-28       1500
 2014-10-29    1501.26
 2014-10-30    1501.26
 2014-10-31    1502.11
 2014-11-01    1500.97
 2014-11-02    1500.97
 2014-11-03    1500.97
 2014-11-04    1501.69
 2014-11-05    1501.16
 2014-11-06    1501.16
 2014-11-07    1500.56
 2014-11-08    1501.34
 2014-11-09    1501.34
 2014-11-10    1502.54
 2014-11-11    1502.54
 2014-11-12    1501.82
 2014-11-13    1501.82
 2014-11-14    1503.39
 2014-11-15    1502.49
 2014-11-16    1502.49
 2014-11-17    1502.49
 2014-11-18    1502.49
 2014-11-19    1503.02
 2014-11-20    1503.02
 2014-11-21    1503.02
 2014-11-22    1504.69
 2014-11-23    1504.69
 2014-11-24    1503.67
 2014-11-25    1503.67
 2014-11-26    1502.83
                ...   
 2016-03-14    1505.64
 2016-03-15     1506.4
 2016-03-16     1506.4
 2016-03-17    1507.18
 2016-03-18    1507.18
 2016-03-19    1507.77
 2016-03-20    1507.77
 2016-03-21    1509.27
 2016-03-22    1509.27
 2016-03-23    1509.27
 2016-03-24    1510.24
 2016-03-25    1510.24
 2016-03-26     1509.1
 2016-03-27     1509.7
 2016-03-28     1509.7
 2016-03-29    1510.16
 2016-03-30    1510.16
 2016-03-31    1511.69
 2016-04-01    1511.69
 2016-04-02    1510.58
 2016-04-03    1509.94
 2016-04-05    1509.94
 2016-04-06    1511.34
 2016-04-07    1511.34
 2016-04-08       1510
 2016-04-09       1510
 2016-04-10    1511.99
 2016-04-11    1511.99
 2016-04-12    1513.23
 2016-04-13    1512.59
 Name: IND, dtype: object, 2014-10-28    1501.59
 2014-10-29    1501.59
 2014-10-30    1501.59
 2014-10-31    1501.59
 2014-11-01    1502.24
 2014-11-02    1502.24
 2014-11-03    1500.98
 2014-11-04    1502.03
 2014-11-05    1502.03
 2014-11-06    1502.03
 2014-11-07    1502.03
 2014-11-08    1501.66
 2014-11-09    1501.66
 2014-11-10    1500.74
 2014-11-11    1500.74
 2014-11-12    1501.66
 2014-11-13    1501.66
 2014-11-14    1505.01
 2014-11-15    1505.01
 2014-11-16    1505.01
 2014-11-17    1503.96
 2014-11-18    1503.24
 2014-11-19    1503.24
 2014-11-20    1503.24
 2014-11-21    1501.45
 2014-11-22    1500.38
 2014-11-23    1500.38
 2014-11-24    1500.38
 2014-11-25    1501.34
 2014-11-26    1501.34
                ...   
 2016-03-14    1493.81
 2016-03-15    1493.81
 2016-03-16    1492.57
 2016-03-17    1492.57
 2016-03-18    1493.21
 2016-03-19    1493.21
 2016-03-20    1493.91
 2016-03-21    1493.91
 2016-03-22     1495.1
 2016-03-23     1495.1
 2016-03-24    1494.12
 2016-03-25    1494.12
 2016-03-26    1495.84
 2016-03-27    1495.84
 2016-03-28    1496.82
 2016-03-29    1496.82
 2016-03-30    1495.85
 2016-03-31    1496.68
 2016-04-01    1496.68
 2016-04-02    1496.68
 2016-04-03    1495.23
 2016-04-05    1493.81
 2016-04-06    1492.91
 2016-04-07    1492.91
 2016-04-08    1493.89
 2016-04-09    1495.48
 2016-04-10    1495.48
 2016-04-11    1496.13
 2016-04-12    1496.13
 2016-04-13    1493.45
 Name: NOP, dtype: object]

In [22]:
#Adds ELO to schedule
for index, game in games_2014.iterrows():
    h_team = game['Home Team']
    game_dt = game['GAME_DATE']
    poss_elo = elo_data[elo_data.index < game_dt]
    if len(poss_elo) == 0:
        h_elo_score = 1500
    else:
        h_elo_score = poss_elo.tail(1)[h_team][0]
    games_2014.set_value(index, 'H_ELO', h_elo_score)
    games_2014.set_value(index, 'H_ELO_std', norm.cdf((h_elo_score - elo_mean)*1.0/elo_std))
    
    a_team = game['Away Team']
    if len(poss_elo) == 0:
        a_elo_score = 1500
    else:
        a_elo_score = poss_elo.tail(1)[a_team][0]
    games_2014.set_value(index, 'A_ELO', a_elo_score)
    games_2014.set_value(index, 'A_ELO_std', norm.cdf((a_elo_score - elo_mean)*1.0/elo_std))

In [24]:
#Normalizes by ELO

hff_cols = [x for x in games_2014.columns.values if 'H_FF' in x]
for col in hff_cols:
    norm_ff = [x*y for x,y in zip(games_2014[col], games_2014['H_ELO_std'])]
    games_2014[col] = norm_ff
    
aff_cols = [x for x in games_2014.columns.values if 'A_FF' in x]
for col in aff_cols:
    norm_ff = [x*y for x,y in zip(games_2014[col], games_2014['A_ELO_std'])]
    games_2014[col] = norm_ff

In [26]:
#Create last n statistics
games_2014['Pts_diff'] = [x-y for x,y in zip(games_2014['PTS_home'], games_2014['PTS_away'])]
games_2014 = games_2014[['Pts_diff', 'PTS_home', 'PTS_away', 'GAME_DATE', 'WL', 'Home Team', 'Away Team', 'H_FF_EFG', 'H_FF_ORB', 'H_FF_FTFGA', 'H_FF_TOV', 'A_FF_EFG', 'A_FF_ORB', 'A_FF_FTFGA', 'A_FF_TOV']]
games_2014 = games_2014.rename(index = str, columns = {'PTS_away':'A_PTS', 'PTS_home':'H_PTS', 'WL':'H_WL'})
games_2014['H_WL'] = [1 if x=='W' else 0 for x in games_2014['H_WL']]
games_2014['A_WL'] = [1-x for x in games_2014['H_WL']]
stats_2014 = Stats(games_2014, 'avg', 'GAME_DATE', 'Home Team', 'Away Team', 'Pts_diff')
stats_5 = stats_2014.get_lastn_stats(5)

games_2015['Pts_diff'] = [x-y for x,y in zip(games_2015['PTS_home'], games_2015['PTS_away'])]
games_2015 = games_2015[['Pts_diff', 'PTS_home', 'PTS_away', 'GAME_DATE', 'WL', 'Home Team', 'Away Team', 'H_FF_EFG', 'H_FF_ORB', 'H_FF_FTFGA', 'H_FF_TOV', 'A_FF_EFG', 'A_FF_ORB', 'A_FF_FTFGA', 'A_FF_TOV']]
games_2015 = games_2015.rename(index = str, columns = {'PTS_away':'A_PTS', 'PTS_home':'H_PTS', 'WL':'H_WL'})
games_2015['H_WL'] = [1 if x=='W' else 0 for x in games_2015['H_WL']]
games_2015['A_WL'] = [1-x for x in games_2015['H_WL']]
stats_2015 = Stats(games_2015, 'avg', 'GAME_DATE', 'Home Team', 'Away Team', 'Pts_diff')
stats_5 = stats_5.append(stats_2015.get_lastn_stats(5))
stats_5.to_csv('stats_5.csv', index = False)

In [27]:
#filters out games with insufficient data
print len(stats_5)

stats_5 = stats_5[stats_5['H_PTS_5']!=-1]
print len(stats_5)

stats_5 = stats_5[stats_5['A_PTS_5']!=-1]
print len(stats_5)


2460
2427
2426

In [28]:
# Gets correlation of variables to target variable
stats_2015.get_correl(stats_5)


Out[28]:
Correlation
H_PTS_5 0.181956
H_O_PTS_5 -0.102344
A_PTS_5 -0.129266
A_O_PTS_5 0.128906
H_WL_5 0.218901
H_O_WL_5 -0.218901
A_WL_5 -0.186963
A_O_WL_5 0.186963
H_FF_EFG_5 0.081710
H_O_FF_EFG_5 0.005367
A_FF_EFG_5 -0.064832
A_O_FF_EFG_5 0.035255
H_FF_ORB_5 0.069607
H_O_FF_ORB_5 0.006655
A_FF_ORB_5 -0.057203
A_O_FF_ORB_5 0.024671
H_FF_FTFGA_5 0.049785
H_O_FF_FTFGA_5 0.013526
A_FF_FTFGA_5 -0.050100
A_O_FF_FTFGA_5 0.034866
H_FF_TOV_5 0.052600
H_O_FF_TOV_5 0.017478
A_FF_TOV_5 -0.050366
A_O_FF_TOV_5 0.008414

In [29]:
x = stats_5.drop('Pts_diff', axis=1)
gs = Game_Scores(stats_5, x, 'Pts_diff')

In [30]:
gs.create_rank_order_graph()


//anaconda/lib/python2.7/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if self._edgecolors == str('face'):

In [31]:
gs.get_model().get_mse()


Out[31]:
144.2439012108438

In [ ]: