Run in Python3
In [3]:
import matplotlib
#matplotlib.use('Qt4Agg')
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn import datasets
%matplotlib inline
iris = datasets.load_iris()
X = iris.data
y = iris.target
fig = plt.figure()
pca = PCA(n_components=2)
print ('fitting pca')
X = pca.fit_transform(X)
markers = []
for i in y:
if i == 0:
markers.append('x')
elif i == 1:
markers.append('.')
else:
markers.append('D')
print ('plotting')
plt.scatter(X[:, 0], X[:, 1])
plt.show()
#ax = fig.add_subplot(111)
#ax.plot(range(100))
#fig.savefig('graph.png')
In [ ]: