In [1]:
#%matplotlib inline
import numpy as np
import pandas as pd
In [2]:
train = pd.read_csv('./input/digit_train.csv')
test = pd.read_csv('./input/digit_test.csv')
In [3]:
train = train.head(1000)
y_train = train.pop('label')
X_train = train
#print(train.describe())
#print(X_train.head(2))
#print(y_train)
#print(test.head(2))
#print(X_train.count)
#print(y_train)
In [4]:
from sklearn.svm import SVC
clf = SVC()
clf.fit(X_train, y_train)
Out[4]:
In [5]:
y_pred= clf.predict(test)
#print(y_pred)
#from sklearn.metrics import accuracy_score
#accuracy_score(, y_pred)
submission = pd.DataFrame(y_pred)
#print (submission.head(4))
submission.to_csv('submission_digit_recognizer.csv')
In [6]:
from sklearn import decomposition
pca = decomposition.PCA(n_components=3)
pca.fit(train)
new_train = pca.transform(train)
print(new_train)
In [ ]: