In [1]:
%matplotlib inline
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.feature_selection import SelectKBest, f_regression 
from sklearn.linear_model import LinearRegression 
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor

In [3]:
boston_dataset = datasets.load_boston()
X_full = boston_dataset.data
Y = boston_dataset.target
print (X_full.shape)
print (Y.shape)


(506, 13)
(506,)

In [5]:
selector = SelectKBest(f_regression, k=1)
selector.fit(X_full, Y)

X = X_full[:, selector.get_support()]
print (X.shape)


(506, 1)

In [6]:
plt.scatter(X, Y, color='black')
plt.show()



In [7]:
regressor = LinearRegression(normalize=True)
regressor.fit(X, Y)
plt.scatter(X, Y, color='black')
plt.scatter(X, regressor.predict(X), color='blue', linewidth=3)
plt.show()



In [8]:
regressor = SVR()
regressor.fit(X, Y)
plt.scatter(X, Y, color='black')
plt.scatter(X, regressor.predict(X), color='blue', linewidth=3)
plt.show()



In [9]:
regressor = RandomForestRegressor()
regressor.fit(X, Y)
plt.scatter(X, Y, color='black')
plt.scatter(X, regressor.predict(X), color='blue', linewidth=3)
plt.show()



In [ ]:


In [ ]: