In [1]:
# Load Biospytial modules and etc.
%matplotlib inline
import sys
sys.path.append('/apps/external_plugins/spystats/')
#import django
#django.setup()
import pandas as pd
import matplotlib.pyplot as plt
## Use the ggplot style
plt.style.use('ggplot')
import numpy as np
In [2]:
## Model Specification
import pymc3 as pm
from spystats import tools
In [3]:
sigma=3.5
range_a=10.13
kappa=3.0/2.0
#ls = 0.2
#tau = 2.0
cov = sigma * pm.gp.cov.Matern32(2, range_a,active_dims=[0,1])
In [4]:
n = 10
grid = tools.createGrid(grid_sizex=n,grid_sizey=n,minx=0,miny=0,maxx=50,maxy=50)
In [5]:
K = cov(grid[['Lon','Lat']].values).eval()
sample = pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=1)
grid['Z'] = sample
In [6]:
plt.figure(figsize=(14,4))
plt.imshow(grid.Z.values.reshape(n,n),interpolation=None)
Out[6]:
In [7]:
print("sigma: %s, phi: %s"%(sigma,range_a))
In [ ]:
## Analysis, GP only one parameter to fit
# The variational method is much beter.
with pm.Model() as model:
#sigma = 1.0
sigma = pm.Uniform('sigma',0,4)
phi = pm.Normal('phi',mu=8,sd=3)
# phi = pm.Uniform('phi',5,10)
cov = sigma * pm.gp.cov.Matern32(2,phi,active_dims=[0,1])
K = cov(grid[['Lon','Lat']].values)
y_obs = pm.MvNormal('y_obs',mu=np.zeros(n*n),cov=K,observed=grid.Z)
#gp = pm.gp.Latent(cov_func=cov,observed=sample)
# Use elliptical slice sampling
#ess_step = pm.EllipticalSlice(vars=[f_sample], prior_cov=K)
#ess_Step = pm.HamiltonianMC()
#%time trace = pm.sample(5000)
## Variational
%time results = pm.fit()
In [ ]:
from pymc3 import find_MAP
map_estimate = find_MAP(model=model)
In [ ]:
map_estimate
In [ ]:
In [ ]:
In [13]:
sigma=3.5
range_a=10.13
kappa=3.0/2.0
#ls = 0.2
#tau = 2.0
cov = sigma * pm.gp.cov.Matern32(2, range_a,active_dims=[0,1])
n = 30
grid = tools.createGrid(grid_sizex=n,grid_sizey=n,minx=0,miny=0,maxx=50,maxy=50)
K = cov(grid[['Lon','Lat']].values).eval()
pfield = pm.MvNormal.dist(mu=np.zeros(K.shape[0]), cov=K).random(size=1)
alpha = 0
poiss_data = np.exp(alpha + pfield)
grid['Z'] = poiss_data
plt.figure(figsize=(14,4))
plt.imshow(grid.Z.values.reshape(n,n),interpolation=None)
print("sigma: %s, phi: %s"%(sigma,range_a))
In [ ]:
pm.sample?
In [ ]:
## Analysis, GP only one parameter to fit
# The variational method is much beter.
with pm.Model() as model:
#sigma=3.5
range_a=10.13
sigma = pm.Uniform('sigma',0,4)
#phi = pm.HalfNormal('phi',mu=8,sd=3)
phi = pm.Uniform('phi',6,20)
cov = sigma * pm.gp.cov.Matern32(2,phi,active_dims=[0,1])
#K = cov(grid[['Lon','Lat']].values)
#phiprint = tt.printing.Print('phi')(phi)
## The latent function
gp = pm.gp.Latent(cov_func=cov)
## I don't know why this
f = gp.prior("latent_field", X=grid[['Lon','Lat']].values,reparameterize=False)
#f_print = tt.printing.Print('latent_field')(f)
y_obs = pm.Poisson('y_obs',mu=f,observed=grid.Z)
#y_obs = pm.MvNormal('y_obs',mu=np.zeros(n*n),cov=K,observed=grid.Z)
#gp = pm.gp.Latent(cov_func=cov,observed=sample)
# Use elliptical slice sampling
#ess_step = pm.EllipticalSlice(vars=[f_sample], prior_cov=K)
#step = pm.HamiltonianMC()
#step = pm.Metropolis()
#%time trace = pm.sample(5000,step)#,tune=0,chains=1)
## Variational
%time results = pm.fit()
In [ ]:
ESsta dando un monton de inf en averafe lost
In [ ]:
pm.traceplot(trace)
In [ ]:
for RV in model.basic_RVs:
print(RV.name, RV.logp(model.test_point))
In [12]:
from pymc3 import find_MAP
map_estimate = find_MAP(model=model)
map_estimate
Out[12]:
In [ ]:
np.log(0)
In [ ]:
import theano.tensor as tt
The posterior is analytically tractable so we can compute the posterior mean explicitly. Rather than computing the inverse of the covariance matrix K, we use the numerically stable calculation described Algorithm 2.1 in the book “Gaussian Processes for Machine Learning” (2006) by Rasmussen and Williams, which is available online for free.
In [ ]:
fig, ax = plt.subplots(figsize=(14, 6));
ax.scatter(X0, f, s=40, color='b', label='True points');
# Analytically compute posterior mean
## This is the cholesky decomposition of the Covariance Matrix with kernel nugget
L = np.linalg.cholesky(K_noise.eval())
## Faith step, This solves the base x's such that Lx = f and the uses x for solving y's such that L.T y = x
alpha = np.linalg.solve(L.T, np.linalg.solve(L, f))
## Multiply the posterior (ALgorithm 2.1 in Rasmunssen)
## Using the "extended matrix" K_s
post_mean = np.dot(K_s.T.eval(), alpha)
ax.plot(X0, post_mean, color='g', alpha=0.8, label='Posterior mean');
ax.set_xlim(0, 3);
ax.set_ylim(-2, 2);
ax.legend();
In [ ]:
with pm.Model() as model:
# The actual distribution of f_sample doesn't matter as long as the shape is right since it's only used
# as a dummy variable for slice sampling with the given prior
### From doc:
###
f_sample = pm.Flat('f_sample', shape=(n, ))
## Actually, pm.Flat is a zero array of shape n
# Likelihood
## The covariance is only in the diagonal
y = pm.MvNormal('y', observed=sample, mu=f_sample, cov=noise * tt.eye(n), shape=n)
# Interpolate function values using noisy covariance matrix
## Deterministic allows to compose (do algebra) with RV in many different ways.
##While these transformations work seamlessly, its results are not stored automatically.
##Thus, if you want to keep track of a transformed variable, you have to use pm.Determinstic:
## from http://docs.pymc.io/notebooks/api_quickstart.html
## So in this case is transforming the rv into:
## the low triangular cholesky decomposition of the Covariance with nugget
L = tt.slinalg.cholesky(K_noise)
## So this is for calculating the "kernel" part of the MVN i.e. (mu -x).T * (LL.T)^-1 * (mu-x)
## but considering mu = 0 we have that x = linalg.solve(L,y) (because Lx = y)
## Then, L.T*x)
f_pred = pm.Deterministic('f_pred', tt.dot(K_s.T, tt.slinalg.solve(L.T, tt.slinalg.solve(L, f_sample))))
# Use elliptical slice sampling
ess_step = pm.EllipticalSlice(vars=[f_sample], prior_cov=K_stable)
trace = pm.sample(5000, start=model.test_point, step=[ess_step], progressbar=False, random_seed=1)
In [ ]:
fig, ax = plt.subplots(figsize=(14, 6));
for idx in np.random.randint(4000, 5000, 500):
ax.plot(X0, trace['f_pred'][idx], alpha=0.02, color='navy')
ax.scatter(X0, f, s=40, color='k', label='True points');
ax.plot(X0, post_mean, color='g', alpha=0.8, label='Posterior mean');
ax.legend();
ax.set_xlim(0, 3);
ax.set_ylim(-2, 2);
In [ ]:
pm.traceplot(trace)
In Gaussian process classification, the likelihood is not normal and thus the posterior is not analytically tractable. The prior is again a multivariate normal with covariance matrix K, and the likelihood is the standard likelihood for logistic regression: \begin{equation} L(y | f) = \Pi_n \sigma(y_n, f_n) \end{equation}
We generate random samples from a Gaussian process, assign any points greater than zero to a “positive” class, and assign all other points to a “negative” class.
In [ ]:
np.random.seed(5)
f = np.random.multivariate_normal(mean=np.zeros(n), cov=K_stable.eval())
# Separate data into positive and negative classes
f[f > 0] = 1
f[f <= 0] = 0
fig, ax = plt.subplots(figsize=(14, 6));
for idx in np.random.randint(4000, 5000, 500):
ax.plot(X, trace['f_pred'][idx], alpha=0.02, color='navy')
ax.scatter(X0, f, s=40, color='k', label='True points');
ax.plot(X, post_mean, color='g', alpha=0.8, label='Posterior mean');
ax.legend();
ax.set_xlim(0, 3);
ax.set_ylim(-2, 2);
In [ ]:
with pm.Model() as model:
# Again, f_sample is just a dummy variable
f_sample = pm.Flat('f_sample', shape=n)
f_transform = pm.invlogit(f_sample)
# Binomial likelihood
y = pm.Binomial('y', observed=f, n=np.ones(n), p=f_transform, shape=n)
# Interpolate function values using noiseless covariance matrix
L = tt.slinalg.cholesky(K_stable)
f_pred = pm.Deterministic('f_pred', tt.dot(K_s.T, tt.slinalg.solve(L.T, tt.slinalg.solve(L, f_transform))))
# Use elliptical slice sampling
ess_step = pm.EllipticalSlice(vars=[f_sample], prior_cov=K_stable)
trace = pm.sample(5000, start=model.test_point, step=[ess_step], progressbar=False, random_seed=1)
In [ ]:
fig, ax = plt.subplots(figsize=(14, 6));
for idx in np.random.randint(4000, 5000, 500):
ax.plot(X, trace['f_pred'][idx], alpha=0.04, color='navy')
ax.scatter(X0, f, s=40, color='k');
ax.set_xlim(0, 3);
ax.set_ylim(-0.1, 1.1);
In [ ]:
In [ ]: