In [1]:
from PIL import Image
from numpy import *
from pylab import *
In [2]:
from scipy.misc import imresize
import graphcut
graphcut = reload(graphcut)
from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow
import bayes
In [3]:
im = array(Image.open('empire.jpg'))
im = imresize(im, 0.07, interp='bilinear')
size = im.shape[:2]
In [4]:
labels = zeros(size)
labels[3:18, 3:18] = -1
labels[-18:-3, -18:-3] = 1
In [5]:
def build_bayes_graph(im, labels, sigma=1e-2, kappa=2):
""" Build a graph from 4-neighborhood of pixels.
Foregraound and background is determined from
labels (1 for foreground, -1 for background, 0 othewise)
and is modeled with naive Bayes classifiers. """
m, n = im.shape[:2]
# RGB vector version (one pixel per row)
vim = im.astype('float')
vim = vim.reshape((-1, 3))
# RGB for foreground and background
foreground = im[labels == 1].reshape((-1, 3))
background = im[labels == -1].reshape((-1, 3))
train_data = [foreground, background]
# train naive Bayes classifier
bc = bayes.BayesClassifier()
bc.train(train_data, labels)
# get probabilities for all pixels
bc_lables, prob = bc.classify(vim)
prob_fg = prob[0]
prob_bg = prob[1]
# create graph with m*n+2 nodes
gr = digraph()
gr.add_nodes(range(m*n+2))
source = m*n # second to last is source
sink = m*n+1 # last node is sink
# normalize
pos = m*n/2-100
for i in range(vim.shape[0]):
vim[i] = vim[i] / linalg.norm(vim[i])
# go through all nodes and add edges
for i in range(m*n):
# add edge from source
if (prob_fg[i]>prob_bg[i]):
gr.add_edge((source, i), wt=((prob_fg[i]-prob_bg[i])/(prob_fg[i] + prob_bg[i])))
else:
# add edge to sink
gr.add_edge((i, sink), wt=((prob_bg[i]-prob_fg[i])/(prob_fg[i] + prob_bg[i])))
# add edges to neighbors
if i % n != 0: # left exists
edge_wt = kappa*exp(-1.0*sum((vim[i] - vim[i-1])**2)/sigma)
gr.add_edge((i, i-1), wt=edge_wt)
if (i+1) % n != 0: # right exists
edge_wt = kappa*exp(-1.0*sum((vim[i] - vim[i+1])**2)/sigma)
gr.add_edge((i, i+1), wt=edge_wt)
if i//n != 0: # up exists
edge_wt = kappa*exp(-1.0*sum((vim[i] - vim[i-n])**2)/sigma)
gr.add_edge((i, i-n), wt=edge_wt)
if i//n != m-1: # down exists
edge_wt = kappa*exp(-1.0*sum((vim[i] - vim[i+n])**2)/sigma)
gr.add_edge((i, i+n), wt=edge_wt)
return gr
In [6]:
import time
In [9]:
# the original version from Chapter-9
start = time.time()
g = graphcut.build_bayes_graph(im, labels, kappa=1)
res2 = graphcut.cut_graph(g, size)
end = time.time()
print end - start, 's'
In [7]:
# Reduced version. Each pixel has only one link either to source or to sink
start = time.time()
g = build_bayes_graph(im, labels, kappa=1)
res = graphcut.cut_graph(g, size)
end = time.time()
print end - start, 's'
In [8]:
figure()
graphcut.show_labeling(im, labels)
figure()
subplot(1, 2, 1)
imshow(res2)
gray()
axis('off')
subplot(1, 2, 2)
imshow(res)
gray()
axis('off')
show()
In [ ]: