In [1]:
from numpy import *
from PIL import *
import pickle
from pylab import *
import os
In [2]:
import sift
import dsift
dsift = reload(dsift)
import imtools
imtools = reload(imtools)
In [3]:
def read_gesture_features_labels(path):
# make a list of the files with .dsift at the end
featlist = [os.path.join(path, f) for f in os.listdir(path)
if f.endswith('.dsift')]
# read features
features = []
for featfile in featlist:
l, d = sift.read_features_from_file(featfile)
features.append(d.flatten())
features = array(features)
# generate labels
labels = [featfile.split('/')[-1][0] for featfile in featlist]
return features, array(labels)
In [4]:
features, labels = read_gesture_features_labels('train/')
test_features, test_labels = read_gesture_features_labels('test/')
classnames = unique(labels)
In [5]:
# the first letter of the file name is the label
print labels
In [6]:
def convert_labels(labels, transl):
return [transl[l] for l in labels]
In [7]:
features = map(list, features)
test_features = map(list, test_features)
In [8]:
# Alphabetic label is translated to numbers, and vice versa
transl = {}
for i, c in enumerate(classnames):
transl[c], transl[i] = i, c
In [9]:
from svmutil import *
In [10]:
prob = svm_problem(convert_labels(labels, transl), features) # Labels 'A', 'B', ... is converted to numbers
In [12]:
d = 2
param = svm_parameter('-t 1 -d '+str(d)) # use linear kernel
m = svm_train(prob, param)
res = svm_predict(convert_labels(labels, transl), features, m)
res = svm_predict(convert_labels(test_labels, transl), test_features, m)[0]
res = convert_labels(res, transl)
acc = sum(1.0*(res==test_labels)) / len(test_labels)
print 'Accuracy:', acc
In [13]:
accs = []
for d in arange(3, 12):
param = svm_parameter('-t 1 -d '+str(d)) # use linear kernel
m = svm_train(prob, param)
res = svm_predict(convert_labels(labels, transl), features, m)
res = svm_predict(convert_labels(test_labels, transl), test_features, m)[0]
res = convert_labels(res, transl)
acc = sum(1.0*(res==test_labels)) / len(test_labels)
print 'Accuracy:', acc
accs.append((d, acc))
In [14]:
def print_confusion(res, test_labels, classnames):
n = len(classnames)
class_ind = dict([(classnames[i], i) for i in range(n)])
confuse = zeros((n, n))
for i in range(len(test_labels)):
confuse[class_ind[res[i]], class_ind[test_labels[i]]] += 1
print 'Confusion matrix for'
print classnames
print confuse
In [15]:
print_confusion(res, test_labels, classnames)
In [29]:
import matplotlib.pyplot as plt
In [30]:
dimension = [a[0] for a in accs]
accuracy = [a[1] for a in accs]
In [32]:
plt.plot(dimension, accuracy)
show()
In [ ]: