In [1]:
from numpy import *
from PIL import *
import pickle
from pylab import *
import os
In [2]:
import pickle
import bayes
import imtools
In [3]:
with open('points_normal.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
bc = bayes.BayesClassifier()
bc.train([class_1, class_2], [1, -1])
with open('points_normal_test.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
print bc.classify(class_1[:10])[0]
print bc.classify(class_2[:10])[0]
# draw points and boundary line
def classify(x, y, bc=bc):
points = vstack((x, y))
return bc.classify(points.T)[0]
imtools.plot_2D_boundary([-6, 6, -6, 6], [class_1, class_2], classify, [1, -1])
show()
In [48]:
with open('points_normal.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
In [49]:
import heurisitc
poisson = reload(poisson)
bcp = poisson.BayesClassifier()
In [50]:
bcp.train([class_1, class_2], [1, -1])
In [51]:
with open('points_normal_test.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
In [52]:
print bcp.classify(class_1[:10])[0]
print bcp.classify(class_2[:10])[0]
In [53]:
def classify(x, y, bc=bcp):
points = vstack((x, y))
return bc.classify(points.T)[0]
imtools.plot_2D_boundary([-6, 6, -6, 6], [class_1, class_2], classify, [1, -1])
show()
In [45]:
with open('points_ring.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
bc = bayes.BayesClassifier()
bc.train([class_1, class_2], [1, -1])
with open('points_ring_test.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
def classify(x, y, bc=bc):
points = vstack((x, y))
return bc.classify(points.T)[0]
imtools.plot_2D_boundary([-6, 6, -6, 6], [class_1, class_2], classify, [1, -1])
show()
In [47]:
import poisson
poisson = reload(poisson)
with open('points_ring.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
bcp = poisson.BayesClassifier()
bcp.train([class_1, class_2], [1, -1])
with open('points_ring_test.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
def classify(x, y, bc=bcp):
points = vstack((x, y))
return bc.classify(points.T)[0]
imtools.plot_2D_boundary([-6, 6, -6, 6], [class_1, class_2], classify, [1, -1])
show()
In [ ]: