In [10]:
from numpy import *
from PIL import *
import pickle
from pylab import *
In [11]:
import knn
knn = reload(knn)
import imtools
imtools = reload(imtools)
In [12]:
with open('points_normal.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
In [13]:
model = knn.KnnClassifier(labels, vstack((class_1, class_2)))
In [14]:
with open('points_normal_test.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
In [15]:
print model.classify(class_1[0])
In [24]:
for k in arange(1, 10):
def classify(x, y, model=model, k=k):
return array([model.classify([xx, yy], k) for (xx, yy) in zip(x, y)])
imtools.plot_2D_boundary([-6, 6, -6, 6], [class_1, class_2], classify, [1, -1])
show()
In [21]:
In [40]:
with open('points_ring.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
model = knn.KnnClassifier(labels, vstack((class_1, class_2)))
with open('points_ring_test.pkl', 'r') as f:
class_1 = pickle.load(f)
class_2 = pickle.load(f)
labels = pickle.load(f)
def classify2(x, y, model=model):
return array([model.classify([xx, yy]) for (xx, yy) in zip(x, y)])
imtools.plot_2D_boundary([-6, 6, -6, 6], [class_1, class_2], classify2, [1, -1])
show()
In [ ]: