In [4]:
from neuralnilm.monitor.monitor import Monitor

mon = Monitor("e575_ae_kettle")

In [7]:
mon._plot_train_scores()

In [9]:
mon._plot_validation_scores()

In [ ]:
#metadata = mon.db.trained_nets.find_one({'_id': mon.experiment_id})

In [ ]:
#metadata

In [ ]:
#sources = metadata['data']['pipeline']['sources']
#sources

In [ ]: