In [4]:
from neuralnilm.monitor.monitor import Monitor
mon = Monitor("e575_ae_kettle")
In [7]:
mon._plot_train_scores()
In [9]:
mon._plot_validation_scores()
In [ ]:
#metadata = mon.db.trained_nets.find_one({'_id': mon.experiment_id})
In [ ]:
#metadata
In [ ]:
#sources = metadata['data']['pipeline']['sources']
#sources
In [ ]: