In [1]:
# load packages
import pandas as pd
import numpy as np
import ineqpy as inq
%matplotlib inline

First-steps


In [2]:
# load data
data = pd.read_csv('eusilc.csv', index_col=0).dropna()
svy = inq.api.Survey(data, weights='rb050')

In [3]:
svy.gini('eqincome')


Out[3]:
0.26516133165507139

In [4]:
svy.atkinson('eqincome')


Out[4]:
0.060002757905598392

In [5]:
svy.theil('eqincome')


Out[5]:
0.12064816023130914

In [6]:
svy.mean('eqincome')


Out[6]:
20431.292738646902

In [7]:
svy.percentile('eqincome')


Out[7]:
18658.461904761898

In [8]:
svy.kurt('eqincome')


Out[8]:
13.28551976978007

In [9]:
svy.skew('eqincome')


Out[9]:
2.1150515104443115

In [10]:
svy.lorenz('eqincome').plot(figsize=(5,5))


Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x119fcab70>

In [ ]: