In [23]:
import seaborn as sns
import pandas as pd
#plotting inside ipython
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
%matplotlib nbagg
import matplotlib.pyplot as plt
plt.gcf().subplots_adjust(bottom=0.15)


sns.set(style="ticks")
df = pd.read_csv('data3.csv')#, index_col='structure')



In [2]:
print df.head()


                           structure  ss+seq  ss+seq+conservation   \
0       lariat-capping ribozyme (#5)     NaN                   NaN   
1  adenosylcobalamin riboswitch (#6)     NaN                 19.83   
2                             sam #8     NaN                   NaN   
3          c-di-AMP riboswitch (#12)     NaN                   NaN   
4             ZMP riboswitch * (#13)    8.24                  7.11   

   ss+seq+homologs  ss+seq+homologs+conservation  
0              NaN                           NaN  
1              NaN                         14.92  
2              NaN                           NaN  
3              NaN                           NaN  
4              NaN                          5.55  

In [3]:
dfm = pd.melt(df,id_vars=['structure'])#, value_vars=['B', 'C'])

In [4]:
dfm.columns=['structure', 'mode', 'rmsd']
dfm


Out[4]:
structure mode rmsd
0 lariat-capping ribozyme (#5) ss+seq NaN
1 adenosylcobalamin riboswitch (#6) ss+seq NaN
2 sam #8 ss+seq NaN
3 c-di-AMP riboswitch (#12) ss+seq NaN
4 ZMP riboswitch * (#13) ss+seq 8.24
5 lariat-capping ribozyme (#5) ss+seq+conservation NaN
6 adenosylcobalamin riboswitch (#6) ss+seq+conservation 19.83
7 sam #8 ss+seq+conservation NaN
8 c-di-AMP riboswitch (#12) ss+seq+conservation NaN
9 ZMP riboswitch * (#13) ss+seq+conservation 7.11
10 lariat-capping ribozyme (#5) ss+seq+homologs NaN
11 adenosylcobalamin riboswitch (#6) ss+seq+homologs NaN
12 sam #8 ss+seq+homologs NaN
13 c-di-AMP riboswitch (#12) ss+seq+homologs NaN
14 ZMP riboswitch * (#13) ss+seq+homologs NaN
15 lariat-capping ribozyme (#5) ss+seq+homologs+conservation NaN
16 adenosylcobalamin riboswitch (#6) ss+seq+homologs+conservation 14.92
17 sam #8 ss+seq+homologs+conservation NaN
18 c-di-AMP riboswitch (#12) ss+seq+homologs+conservation NaN
19 ZMP riboswitch * (#13) ss+seq+homologs+conservation 5.55

In [70]:
plt.rcParams['figure.figsize']=(20,10)
p = sns.factorplot(x="structure", y="rmsd", hue="mode", main="evoClustRNA", data=dfm, size=6, legend=False)
p.set_xticklabels(rotation=40)
p.axes[0][0].margins(x=1, y=1)
ax = p.axes[0][0]
ax.set_title('EvoClustRNA')
plt.tight_layout()
plt.figsize=(20, 6)
plt.legend(loc='upper left')
p.axes[0][0].set_ylim([0, 30])
#plt.legend(["f1"], loc="upper left")
#fig = p.get_figure()
#fig.set_size_inches(10, 10)
#fig.savefig("progress.png", orientation='portrait', dpi=500)


Out[70]:
(0, 30)

In [ ]: