In [1]:
%matplotlib inline

In [2]:
import networkx as nx
import numpy as np


t1 = np.array([[1,3,1,1],[3,1,1,1],[1,1,1,1],[1,1,1,1]])
g = nx.to_networkx_graph(t1)


Couldn't import dot_parser, loading of dot files will not be possible.

In [3]:
nx.draw(g)



In [4]:
t1


Out[4]:
array([[1, 3, 1, 1],
       [3, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])

In [5]:
g.add_node(4)
g.add_edge(1,4)

In [6]:
nx.draw(g)



In [7]:
m1 = nx.to_numpy_matrix(g)
print m1


[[ 1.  3.  1.  1.  0.]
 [ 3.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  0.]
 [ 1.  1.  1.  1.  0.]
 [ 0.  1.  0.  0.  0.]]

In [8]:
g.remove_node(3)

In [9]:
nx.draw(g)



In [10]:
nx.to_numpy_matrix(g)


Out[10]:
matrix([[ 1.,  3.,  1.,  0.],
        [ 3.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  0.],
        [ 0.,  1.,  0.,  0.]])

In [11]:
m2 = nx.to_numpy_matrix(g)

In [12]:
print m2


[[ 1.  3.  1.  0.]
 [ 3.  1.  1.  1.]
 [ 1.  1.  1.  0.]
 [ 0.  1.  0.  0.]]

In [14]:
import networkx.generators as nxg

In [30]:
nx.draw(nxg.random_lobster(20, 0.2, 0.3))



In [32]:
h1 = nx.star_graph(4)
nx.draw(h1)



In [34]:
h1m = nx.to_numpy_matrix(h1)

In [35]:
h1m[1,2] = 3

In [39]:
h2 = nx.from_numpy_matrix(h1m)

In [40]:
nx.draw(h2)



In [38]:
h1m[1,2] = 0

In [ ]: