In [11]:
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
In [2]:
file = "/Users/mark/seriationct/seriations/seriationct-1/results/23d2out/23d2f6f2-ce8e-11e4-93cb-b8f6b1154c9b-0-minmax-by-weight.png.gml"
In [3]:
g = nx.read_gml(file)
In [12]:
%matplotlib inline
In [14]:
mean_degree = np.mean(g.degree().values())
stddev_degree = np.std(g.degree().values())
print "mean degree: %s stddev: %s" % (mean_degree, stddev_degree)
In [17]:
nx.diameter(g)
Out[17]:
In [21]:
nx.degree_histogram(g)
Out[21]:
In [22]:
dist_file = "/Users/mark/seriationct/seriations/seriationct-1/results/c896638e-cc06-11e4-8260-b8f6b1154c9b-3/c896638e-cc06-11e4-8260-b8f6b1154c9b-3-minmax-by-weight.png.gml"
gd = nx.read_gml(dist_file)
In [23]:
mean_degree = np.mean(gd.degree().values())
stddev_degree = np.std(gd.degree().values())
print "mean degree: %s stddev: %s" % (mean_degree, stddev_degree)
In [24]:
nx.degree_histogram(gd)
Out[24]:
In [25]:
pfg_file = "/Users/mark/src/lipomadsen2015-idss-seriation-paper/seriation-analysis/output/pfg-cpl-minmax-by-weight.png.gml"
gp = nx.read_gml(pfg_file)
In [26]:
mean_degree = np.mean(gp.degree().values())
stddev_degree = np.std(gp.degree().values())
print "mean degree: %s stddev: %s" % (mean_degree, stddev_degree)
In [27]:
nx.degree_histogram(gp)
Out[27]:
In [33]:
hier_3_level_file = "/Users/mark/seriationct/seriations/seriationct-1/results/359c92a6-d0b1-11e4-b6ce-b8f6b1154c9b-0.txt/hier-2-359c92a6-d0b1-11e4-b6ce-b8f6b1154c9b-0-minmax-by-weight.png.gml"
ghier3 = nx.read_gml(hier_3_level_file)
In [34]:
mean_degree = np.mean(ghier3.degree().values())
stddev_degree = np.std(ghier3.degree().values())
print "mean degree: %s stddev: %s" % (mean_degree, stddev_degree)
In [36]:
nx.degree_histogram(ghier3)
Out[36]:
In [37]:
In [ ]: