In [11]:
from __future__ import division
import tensorflow as tf
import numpy as np
import tarfile
import os
import matplotlib.pyplot as plt
import time
# Display plots inline
%matplotlib inline
In [12]:
### IMPORT DATA ###
def csv_to_numpy_array(filePath, delimiter):
return np.genfromtxt(filePath, delimiter=delimiter, dtype=None)
def import_data():
if "data" not in os.listdir(os.getcwd()):
# Untar directory of data if we haven't already
tarObject = tarfile.open("tensorflow-tutorial/data.tar.gz")
tarObject.extractall()
tarObject.close()
print("Extracted tar to current directory")
else:
# we've already extracted the files
pass
print("loading training data")
trainX = csv_to_numpy_array("data/trainX.csv", delimiter="\t")
trainY = csv_to_numpy_array("data/trainY.csv", delimiter="\t")
print("loading test data")
testX = csv_to_numpy_array("data/testX.csv", delimiter="\t")
testY = csv_to_numpy_array("data/testY.csv", delimiter="\t")
return trainX,trainY,testX,testY
trainX,trainY,testX,testY = import_data()
In [13]:
numFeatures = trainX.shape[1]
# numLabels = number of classes we are predicting (here just 2: Ham or Spam)
numLabels = trainY.shape[1]
# TRAINING SESSION PARAMETERS
# number of times we iterate through training data
# tensorboard shows that accuracy plateaus at ~25k epochs
numEpochs = 27000
# a smarter learning rate for gradientOptimizer
learningRate = tf.train.exponential_decay(learning_rate=0.0008,
global_step= 1,
decay_steps=trainX.shape[0],
decay_rate= 0.95,
staircase=True)
In [14]:
X = tf.placeholder(tf.float32, [None, numFeatures])
# yGold = Y-matrix / label-matrix / labels... This will be our correct answers
# matrix. Every row has either [1,0] for SPAM or [0,1] for HAM. 'None' here
# means that we can hold any number of emails
yGold = tf.placeholder(tf.float32, [None, numLabels])
weights = tf.Variable(tf.random_normal([numFeatures,numLabels],
mean=0,
stddev=(np.sqrt(6/numFeatures+
numLabels+1)),
name="weights"))
bias = tf.Variable(tf.random_normal([1,numLabels],
mean=0,
stddev=(np.sqrt(6/numFeatures+numLabels+1)),
name="bias"))
In [15]:
#PREDICTION OPS #INITIALIZE our weights and biases
init_OP = tf.initialize_all_variables()
# PREDICTION ALGORITHM i.e. FEEDFORWARD ALGORITHM
apply_weights_OP = tf.matmul(X, weights, name="apply_weights")
add_bias_OP = tf.add(apply_weights_OP, bias, name="add_bias")
activation_OP = tf.nn.sigmoid(add_bias_OP, name="activation")
### EVALUATION OP ###
# COST FUNCTION i.e. MEAN SQUARED ERROR
cost_OP = tf.nn.l2_loss(activation_OP-yGold, name="squared_error_cost")
### OPTIMIZATION OP ###
# OPTIMIZATION ALGORITHM i.e. GRADIENT DESCENT
training_OP = tf.train.GradientDescentOptimizer(learningRate).minimize(cost_OP)
In [10]:
### GRAPH LIVE UPDATING ###
epoch_values=[]
accuracy_values=[]
cost_values=[]
# Turn on interactive plotting
plt.ion()
# Create the main, super plot
fig = plt.figure()
# Create two subplots on their own axes and give titles
ax1 = plt.subplot("211")
ax1.set_title("TRAINING ACCURACY", fontsize=18)
ax2 = plt.subplot("212")
ax2.set_title("TRAINING COST", fontsize=18)
plt.tight_layout()
In [ ]: