In [1]:
import nn_learn

In [2]:
import pickle
dat = pickle.load(open("data/TrainingData/pickled_generated_sets",'rb'))
pca_dat = pickle.load(open("data/TrainingData/pickled_generated_sets_pca",'rb'))

In [3]:
pca_dat['train_labels'].shape


Out[3]:
(12278,)

In [4]:
neural_net1_pca = {
    "num_features": 12,
    "num_labels": 8,
    "num_layers": 3,
    "num_neurons": [256, 256, 256],
    "use_dropout": True,
    "model_name": "model_pca_3_layers_256",
    "learning_rate": 0.1,
    "learning_rate_decay":0.96
}

In [5]:
NN_3L_256_256_256 = nn_learn.NeuralNetwork(neural_net1_pca)

In [ ]:
NN_3L_256_256_256.train(pca_dat["train_data"], pca_dat["train_labels"],pca_dat["valid_data"],pca_dat["valid_labels"], 1000)


Training Step: 548  | total loss: 1.51852 | time: 0.984s
| SGD | epoch: 003 | loss: 1.51852 - top3: 0.7818 -- iter: 10496/12278

In [ ]:
pca_dat

In [ ]: