In [1]:
import nn_learn
In [2]:
import pickle
dat = pickle.load(open("data/TrainingData/pickled_generated_sets",'rb'))
pca_dat = pickle.load(open("data/TrainingData/pickled_generated_sets_pca",'rb'))
In [3]:
pca_dat['train_labels'].shape
Out[3]:
In [4]:
neural_net1_pca = {
"num_features": 12,
"num_labels": 8,
"num_layers": 3,
"num_neurons": [256, 256, 256],
"use_dropout": True,
"model_name": "model_pca_3_layers_256",
"learning_rate": 0.1,
"learning_rate_decay":0.96
}
In [5]:
NN_3L_256_256_256 = nn_learn.NeuralNetwork(neural_net1_pca)
In [ ]:
NN_3L_256_256_256.train(pca_dat["train_data"], pca_dat["train_labels"],pca_dat["valid_data"],pca_dat["valid_labels"], 1000)
In [ ]:
pca_dat
In [ ]: