In [2]:
%pylab notebook
from __future__ import print_function
import numpy as np
import pandas as pd
import rasterio
from charistools.modelEnv import ModelEnv
from netCDF4 import Dataset
In [3]:
from charistools.readers import ModisTileCube
In [4]:
configFile = "/vagrant/source/charistools/test/modis_tiles_config.ini"
In [5]:
myEnv = ModelEnv(tileConfigFile=configFile, topDir='/projects/CHARIS/charistools_test_data')
In [6]:
modscag_filename = myEnv.forcing_filename(type='modscag_gf', tileID="h23v05", year=2001,verbose=True)
modscag_filename
Out[6]:
In [7]:
modscag_cube = ModisTileCube(filename=modscag_filename, varname='fsca')
In [8]:
scag = modscag_cube.read(1)
scag.shape
np.amin(scag), np.amax(scag)
Out[8]:
In [9]:
mod10a1_filename = myEnv.forcing_filename(type='mod10a1_gf', tileID="h23v05", year=2001,verbose=True)
mod10a1_filename
Out[9]:
In [10]:
mod10_cube = ModisTileCube(filename=mod10a1_filename, varname='fsca')
In [11]:
mod10 = mod10_cube.read(1)
print(mod10.shape)
np.amin(mod10), np.amax(mod10)
Out[11]:
In [12]:
f = Dataset(mod10a1_filename, 'r', 'HDF5')
d = f.groups['500m'].variables['fsca']
In [13]:
d
Out[13]:
In [14]:
forig = Dataset(modscag_filename, 'r', 'HDF5')
dorig = forig.groups['500m'].variables['fsca']
dorig
Out[14]:
In [ ]: