In [2]:
%pylab notebook
from __future__ import print_function
import numpy as np
import pandas as pd
import rasterio
from charistools.modelEnv import ModelEnv
from netCDF4 import Dataset


Populating the interactive namespace from numpy and matplotlib

In [3]:
from charistools.readers import ModisTileCube

In [4]:
configFile = "/vagrant/source/charistools/test/modis_tiles_config.ini"

In [5]:
myEnv = ModelEnv(tileConfigFile=configFile, topDir='/projects/CHARIS/charistools_test_data')

In [6]:
modscag_filename = myEnv.forcing_filename(type='modscag_gf', tileID="h23v05", year=2001,verbose=True)
modscag_filename


Out[6]:
'/projects/CHARIS/charistools_test_data/snow_cover/MODSCAG_GF/MODSCAG_GF_Snow.v0.5.h23v05_2001.h5'

In [7]:
modscag_cube = ModisTileCube(filename=modscag_filename, varname='fsca')

In [8]:
scag = modscag_cube.read(1)
scag.shape

np.amin(scag), np.amax(scag)


Out[8]:
(0.0, 1.0)

In [9]:
mod10a1_filename = myEnv.forcing_filename(type='mod10a1_gf', tileID="h23v05", year=2001,verbose=True)
mod10a1_filename


Out[9]:
'/projects/CHARIS/charistools_test_data/snow_cover/mod10a1_snow_gf/MOD10A1_GF_Snow.v0.5.h23v05_2001.h5'

In [10]:
mod10_cube = ModisTileCube(filename=mod10a1_filename, varname='fsca')

In [11]:
mod10 = mod10_cube.read(1)
print(mod10.shape)
np.amin(mod10), np.amax(mod10)


(2400, 2400)
Out[11]:
(0, 100)

In [12]:
f = Dataset(mod10a1_filename, 'r', 'HDF5')
d = f.groups['500m'].variables['fsca']

In [13]:
d


Out[13]:
<type 'netCDF4._netCDF4.Variable'>
uint8 fsca(phony_dim_0, phony_dim_1, phony_dim_1)
path = /500m
unlimited dimensions: 
current shape = (365, 2400, 2400)
filling off

In [14]:
forig = Dataset(modscag_filename, 'r', 'HDF5')
dorig = forig.groups['500m'].variables['fsca']
dorig


Out[14]:
<type 'netCDF4._netCDF4.Variable'>
uint8 fsca(phony_dim_0, phony_dim_1, phony_dim_1)
    packing_convention: netCDF
    packing_convention_description: unpacked = scale_factor*packed + add_offset
    scale_factor: 0.01
    add_offset: 0.0
path = /500m
unlimited dimensions: 
current shape = (365, 2400, 2400)
filling off

In [ ]: