In [41]:
%pylab notebook
import glob
import pandas as pd
import matplotlib.pyplot as plt
import re


Populating the interactive namespace from numpy and matplotlib
WARNING: pylab import has clobbered these variables: ['all']
`%matplotlib` prevents importing * from pylab and numpy

In [43]:
%cd /Users/brodzik/projects/MODICE/data/MASCONS
#%ls


/Users/brodzik/projects/MODICE/data/MASCONS

In [44]:
all = pd.read_csv('mascon_areas_by_year.csv')

In [68]:
all.set_index('Year', drop=True, inplace=True, verify_integrity=True)

In [69]:
all.columns


Out[69]:
Index([u'Alaskag_1strike_MODICE_area_km^2', u'Alaskag_1strike_MODICE_NS_km^2',
       u'Alaskag_2strike_MODICE_area_km^2', u'Alaskag_2strike_MODICE_NS_km^2',
       u'Alaskag_3strike_MODICE_area_km^2', u'Alaskag_3strike_MODICE_NS_km^2',
       u'Altaigl_1strike_MODICE_area_km^2', u'Altaigl_1strike_MODICE_NS_km^2',
       u'Altaigl_2strike_MODICE_area_km^2', u'Altaigl_2strike_MODICE_NS_km^2',
       ...
       u'Tianshn_2strike_MODICE_area_km^2', u'Tianshn_2strike_MODICE_NS_km^2',
       u'Tianshn_3strike_MODICE_area_km^2', u'Tianshn_3strike_MODICE_NS_km^2',
       u'Tib+Qil_1strike_MODICE_area_km^2', u'Tib+Qil_1strike_MODICE_NS_km^2',
       u'Tib+Qil_2strike_MODICE_area_km^2', u'Tib+Qil_2strike_MODICE_NS_km^2',
       u'Tib+Qil_3strike_MODICE_area_km^2', u'Tib+Qil_3strike_MODICE_NS_km^2'],
      dtype='object', length=114)

In [71]:
import re
strike1_regex = re.compile('.+2strike_MODICE_area_km\^2')
sub1_cols = [m.group(0) for col in all.columns for m in [strike1_regex.search(col)] if m]

In [72]:
sub1_cols


Out[72]:
['Alaskag_2strike_MODICE_area_km^2',
 'Altaigl_2strike_MODICE_area_km^2',
 'Baffing_2strike_MODICE_area_km^2',
 'Ellesme_2strike_MODICE_area_km^2',
 'FrnJLnd_2strike_MODICE_area_km^2',
 'Greenland_2strike_MODICE_area_km^2',
 'HghMtnA_2strike_MODICE_area_km^2',
 'Him+Kar_2strike_MODICE_area_km^2',
 'Iceland_2strike_MODICE_area_km^2',
 'NW_Amer_2strike_MODICE_area_km^2',
 'Nov_Zem_2strike_MODICE_area_km^2',
 'Nthasia_2strike_MODICE_area_km^2',
 'Pam+Kun_2strike_MODICE_area_km^2',
 'Scandin_2strike_MODICE_area_km^2',
 'Sev_Zem_2strike_MODICE_area_km^2',
 'Sib+Kam_2strike_MODICE_area_km^2',
 'Svalbar_2strike_MODICE_area_km^2',
 'Tianshn_2strike_MODICE_area_km^2',
 'Tib+Qil_2strike_MODICE_area_km^2']

In [73]:
sub1_cols.remove('Greenland_2strike_MODICE_area_km^2')

In [74]:
sub1_cols


Out[74]:
['Alaskag_2strike_MODICE_area_km^2',
 'Altaigl_2strike_MODICE_area_km^2',
 'Baffing_2strike_MODICE_area_km^2',
 'Ellesme_2strike_MODICE_area_km^2',
 'FrnJLnd_2strike_MODICE_area_km^2',
 'HghMtnA_2strike_MODICE_area_km^2',
 'Him+Kar_2strike_MODICE_area_km^2',
 'Iceland_2strike_MODICE_area_km^2',
 'NW_Amer_2strike_MODICE_area_km^2',
 'Nov_Zem_2strike_MODICE_area_km^2',
 'Nthasia_2strike_MODICE_area_km^2',
 'Pam+Kun_2strike_MODICE_area_km^2',
 'Scandin_2strike_MODICE_area_km^2',
 'Sev_Zem_2strike_MODICE_area_km^2',
 'Sib+Kam_2strike_MODICE_area_km^2',
 'Svalbar_2strike_MODICE_area_km^2',
 'Tianshn_2strike_MODICE_area_km^2',
 'Tib+Qil_2strike_MODICE_area_km^2']

In [75]:
fig, ax = plt.subplots(1, figsize=(12,8))
all[sub1_cols].plot(ax=ax)
# Shrink current axis by 20%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.6, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1.1, .5))


Out[75]:
<matplotlib.legend.Legend at 0x121c5e9d0>

In [67]:
all


Out[67]:
Year Alaskag_1strike_MODICE_area_km^2 Alaskag_1strike_MODICE_NS_km^2 Alaskag_2strike_MODICE_area_km^2 Alaskag_2strike_MODICE_NS_km^2 Alaskag_3strike_MODICE_area_km^2 Alaskag_3strike_MODICE_NS_km^2 Altaigl_1strike_MODICE_area_km^2 Altaigl_1strike_MODICE_NS_km^2 Altaigl_2strike_MODICE_area_km^2 ... Tianshn_2strike_MODICE_area_km^2 Tianshn_2strike_MODICE_NS_km^2 Tianshn_3strike_MODICE_area_km^2 Tianshn_3strike_MODICE_NS_km^2 Tib+Qil_1strike_MODICE_area_km^2 Tib+Qil_1strike_MODICE_NS_km^2 Tib+Qil_2strike_MODICE_area_km^2 Tib+Qil_2strike_MODICE_NS_km^2 Tib+Qil_3strike_MODICE_area_km^2 Tib+Qil_3strike_MODICE_NS_km^2
0 2000 97236.1 22.5 112236.4 24.7 124935.2 25.1 837.2 0.0 1050.5 ... 15558.7 0.0 18209.9 0.0 5972.9 0.0 6958.2 0.0 7666.3 0.0
1 2001 87438.4 21.7 96540.6 22.8 103776.1 23.4 659.0 0.0 839.3 ... 12116.0 0.0 14201.0 0.0 5403.4 0.0 6243.1 0.0 6778.1 0.0
2 2002 77934.4 20.0 86176.4 23.2 92137.7 23.6 628.7 0.0 794.5 ... 11697.0 0.0 13390.8 0.0 6001.9 0.0 6992.3 0.0 7766.8 0.0
3 2003 71370.6 19.5 79012.4 23.6 83790.7 24.3 591.0 0.0 760.5 ... 12122.6 0.0 13794.6 0.0 6469.0 0.0 7229.9 0.0 7738.4 0.0
4 2004 62306.4 19.7 69415.5 21.0 73638.0 21.7 614.8 0.0 820.4 ... 11784.5 0.0 13543.5 0.0 6039.2 0.0 6759.2 0.0 7251.4 0.0
5 2005 70990.4 20.2 78452.4 23.0 83851.3 23.0 706.0 0.0 912.1 ... 12604.5 0.0 14679.4 0.0 6577.1 0.0 7468.4 0.0 8125.5 0.0
6 2006 78790.0 19.5 88973.9 21.3 97540.5 22.5 671.7 0.0 853.7 ... 10021.3 0.0 11581.1 0.0 5380.6 0.0 6291.9 0.0 6861.8 0.0
7 2007 73246.7 20.6 81594.1 23.6 87996.1 24.3 565.8 0.0 717.4 ... 9749.4 0.0 11177.7 0.0 5952.1 0.0 6815.4 0.0 7442.2 0.0
8 2008 93178.6 21.7 106530.4 22.1 118713.8 23.0 447.1 0.0 578.1 ... 9919.4 0.0 11712.6 0.0 6783.4 0.0 7750.3 0.0 8459.7 0.0
9 2009 68973.3 20.6 77128.8 21.5 82455.5 22.1 1131.3 0.0 1443.8 ... 16410.2 0.0 18984.2 0.0 6382.7 0.0 7288.7 0.0 7973.9 0.0
10 2010 63777.0 20.0 71079.3 23.8 75830.8 24.0 776.2 0.0 1002.5 ... 11639.0 0.0 13670.5 0.0 4762.0 0.0 5806.9 0.0 6348.1 0.0
11 2011 77238.3 17.8 87116.0 20.2 94669.0 20.6 438.8 0.0 570.3 ... 11043.5 0.0 12737.4 0.0 5808.7 0.0 6636.4 0.0 7169.6 0.0
12 2012 85493.0 17.2 95645.3 18.5 103052.3 18.7 365.1 0.0 495.0 ... 9435.3 0.0 11020.8 0.0 6180.2 0.0 6947.6 0.0 7487.7 0.0
13 2013 66276.1 19.5 73709.9 21.0 78534.8 22.5 986.1 0.0 1267.8 ... 9758.0 0.0 11125.5 0.0 4922.8 0.0 5656.0 0.0 6104.7 0.0
14 2014 69280.4 0.0 77252.0 0.0 83132.6 0.0 662.4 0.0 828.2 ... 9038.4 0.0 10551.3 0.0 5225.7 0.0 6039.6 0.0 6571.8 0.0
15 2015 65236.9 0.0 72487.9 0.0 77655.4 0.0 545.4 0.0 689.3 ... 8518.3 0.0 10417.6 0.0 5426.8 0.0 6178.1 0.0 6712.2 0.0

16 rows × 115 columns


In [ ]: