In [75]:
import pandas as pd
from scipy.stats import ttest_ind
In [24]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import prettyplotlib as ppl
In [25]:
import brewer2mpl
set2 = brewer2mpl.get_map('Set2', 'qualitative', 8).mpl_colors
set2[0]
Out[25]:
In [26]:
sample = pd.DataFrame.from_csv('sample_company_goals.csv')
In [49]:
have_goals = sample.loc[sample['has goal']==1]
hg_ave_1 = have_goals['% change emissions'].mean()
hg_std_1 = have_goals['% change emissions'].std()
hg_ave_2 = have_goals['% change intensity'].mean()
hg_std_2 = have_goals['% change intensity'].std()
# mean = 0
# variance = 1
# mean2 = 2.5
In [50]:
no_goals = sample.loc[sample['has goal']==0]
ng_ave_1 = no_goals['% change emissions'].mean()
ng_std_1 = no_goals['% change emissions'].std()
ng_ave_2 = no_goals['% change intensity'].mean()
ng_std_2 = no_goals['% change intensity'].std()
In [74]:
[[hg_ave_1, hg_std_1], [hg_ave_2, hg_std_2],
[ng_ave_1, ng_std_1], [ng_ave_2, ng_std_2]]
Out[74]:
In [76]:
ttest_ind(have_goals['% change emissions'],no_goals['% change emissions'])
Out[76]:
In [77]:
ttest_ind(have_goals['% change intensity'],no_goals['% change intensity'])
Out[77]:
In [78]:
pe_x = np.linspace(-1.5,1.5,100)
hg_pe = mlab.normpdf(pe_x,hg_ave_1,hg_std_1)
ng_pe = mlab.normpdf(pe_x,ng_ave_1,ng_std_1)
In [114]:
hist(no_goals['% change emissions'].values)
In [117]:
ppl.plot(pe_x,ng_pe, linewidth = 3.0, color=set2[1])
ppl.fill_between(pe_x,0,hg_pe,where=pe_x>-0.052, color=set2[0])
ppl.fill_between(pe_x,0,ng_pe,where=pe_x>0.096, color=set2[1])
ppl.plot(pe_x,hg_pe, linewidth = 3.0, color=set2[0])
Out[117]:
In [68]:
pi_x = np.linspace(-1.5,1.5,100)
hg_pi = mlab.normpdf(pi_x,hg_ave_2,hg_std_2)
ng_pi = mlab.normpdf(pi_x,ng_ave_2,ng_std_2)
In [98]:
ppl.plot(pi_x,hg_pi, linewidth = 3.0)
ppl.plot(pi_x,ng_pi, linewidth = 3.0)
ppl.fill_between(pi_x,0,ng_pi,where=pi_x>-0.0112, color=set2[1])
ppl.fill_between(pi_x,0,hg_pi,where=pi_x>-0.146, color=set2[0])
Out[98]:
In [ ]: