In [1]:
import pandas as pd
In [2]:
cy = pd.read_pickle("WRIdata/CountryGHGs.pkl")
In [25]:
cy2011 = cy[cy["Year"] == 2011]
cy2011.set_index("Country", inplace=True)
cy2011.head()
Out[25]:
In [9]:
orginfos = pd.read_pickle("../CDPdata/orginfos.pkl")
orginfos = orginfos.reset_index().set_index("Organisation")
In [12]:
cdp2011 = pd.read_pickle("../CDPdata/2011scope12.pkl")
cdp2011orgs = cdp2011.join(orginfos[["Country", "GICS Sector", "GICS Industry Group", "GICS Industry"]])
cdp2011country = cdp2011orgs.groupby("Country").sum()/1000000
In [33]:
# cdp2011country.loc["USA"]
Out[33]:
In [42]:
# cy2011.loc["United States of America"]
cy2011[[cy2011.columns[1]]].sort(cy2011.columns[1], ascending = 0)[0:21]
Out[42]:
In [37]:
cdp2011country.sort("Scope 1", ascending =0)[0:20]
Out[37]:
In [ ]: