In [1]:
import pandas as pd

In [2]:
cy = pd.read_pickle("WRIdata/CountryGHGs.pkl")

In [25]:
cy2011 = cy[cy["Year"] == 2011]
cy2011.set_index("Country", inplace=True)
cy2011.head()


Out[25]:
Year Total GHG Emissions Excluding Land-Use Change and Forestry (MtCO2e) Total GHG Emissions Including Land-Use Change and Forestry (MtCO2e) Total CO? Excluding Land-Use Change and Forestry (MtCO2) Total CH4 (MtCO2e) Total N2O (MtCO2e) Total F-Gas (MtCO2e) Energy (MtCO2e) Industrial Processes (MtCO2e) Agriculture (MtCO2e) Waste (MtCO2e) LUCF (MtCO2) Bunker Fuels (MtCO2) Electricity/Heat (MtCO2) Manufacturing/Construction (MtCO2) Transportation (MtCO2) Other Fuel Combustion (MtCO2e) Fugitive Emissions (MtCO2e)
Country
Afghanistan 2011 25.3140 25.3140 6.5892 14.918806 3.555945 0.250075 0.000000 0.000000 10.649049 7.807114 0.00000 0.00 0.00 0.00 0.00 0.000000 0.018588
Albania 2011 6.6421 6.4350 3.8700 2.042046 0.709250 0.020793 4.178090 0.000000 1.815239 0.626808 -0.20709 0.06 0.13 0.87 2.32 0.813442 0.044648
Algeria 2011 171.0483 172.5160 121.3781 43.355179 2.738071 3.576946 140.423879 14.253527 6.605581 9.755265 1.46775 2.23 39.60 13.51 32.34 18.847913 36.125966
Angola 2011 223.3533 263.4348 28.4594 125.905947 68.879997 0.107982 116.460058 0.000000 104.617518 2.167738 40.08147 1.16 2.40 2.71 6.82 5.439277 99.090781
Antigua & Barbuda 2011 1.2977 1.2977 0.7316 0.176359 0.045035 0.344739 0.000000 0.000000 0.068951 0.151450 0.00000 0.00 0.00 0.00 0.00 0.000000 0.000000

In [9]:
orginfos = pd.read_pickle("../CDPdata/orginfos.pkl")
orginfos = orginfos.reset_index().set_index("Organisation")

In [12]:
cdp2011 = pd.read_pickle("../CDPdata/2011scope12.pkl")
cdp2011orgs = cdp2011.join(orginfos[["Country", "GICS Sector", "GICS Industry Group", "GICS Industry"]])
cdp2011country = cdp2011orgs.groupby("Country").sum()/1000000

In [33]:
# cdp2011country.loc["USA"]


Out[33]:
Scope 1    733.665351
Scope 2    200.645159
Name: USA, dtype: float64

In [42]:
# cy2011.loc["United States of America"]
cy2011[[cy2011.columns[1]]].sort(cy2011.columns[1], ascending = 0)[0:21]


Out[42]:
Total GHG Emissions Excluding Land-Use Change and Forestry (MtCO2e)
Country
World 43816.7343
China 10552.6054
United States of America 6550.0981
European Union (28) 4540.9445
European Union (15) 3611.0495
India 2486.1713
Russian Federation 2374.3143
Japan 1307.4082
Brazil 1131.1022
Germany 882.9341
Indonesia 834.5754
Canada 716.2074
Iran 715.5275
Mexico 699.0501
Korea (South) 687.7381
Australia 563.4540
United Kingdom 543.5536
Saudi Arabia 532.8904
Italy 491.0664
France 487.3909
South Africa 456.8534

In [37]:
cdp2011country.sort("Scope 1", ascending =0)[0:20]


Out[37]:
Scope 1 Scope 2
Country
Germany 984.913104 56.747364
USA 733.665351 200.645159
Canada 461.843479 3.635726
United Kingdom 240.951168 78.134328
France 190.085999 28.803831
Luxembourg 165.226000 19.599000
South Korea 80.813559 11.677886
Netherlands 75.105620 10.249494
Japan 49.391950 11.997287
India 43.998342 1.864853
Italy 40.078773 5.413656
Spain 39.086450 3.338354
Portugal 14.744282 1.027109
South Africa 11.615124 19.307781
Brazil 6.521813 0.473788
Finland 6.313675 0.660746
Norway 5.912968 5.417774
Belgium 4.070731 3.285823
Austria 3.246066 0.441521
Switzerland 3.153211 2.624117

In [ ]: