x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
60000/60000 [==============================] - 29s 478us/step - loss: 0.2661 - acc: 0.9190 - val_loss: 0.0586 - val_acc: 0.9809
Epoch 2/12
60000/60000 [==============================] - 10s 172us/step - loss: 0.0868 - acc: 0.9738 - val_loss: 0.0384 - val_acc: 0.9870
Epoch 3/12
60000/60000 [==============================] - 10s 171us/step - loss: 0.0636 - acc: 0.9809 - val_loss: 0.0341 - val_acc: 0.9887
Epoch 4/12
34688/60000 [================>.............] - ETA: 4s - loss: 0.0565 - acc: 0.9829
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-4-59100e86d288> in <module>()
50 epochs=epochs,
51 verbose=1,
---> 52 validation_data=(x_test, y_test))
53 score = model.evaluate(x_test, y_test, verbose=0)
54 print('Test loss:', score[0])
~/anaconda3/lib/python3.6/site-packages/keras/models.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
961 initial_epoch=initial_epoch,
962 steps_per_epoch=steps_per_epoch,
--> 963 validation_steps=validation_steps)
964
965 def evaluate(self, x=None, y=None,
~/anaconda3/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1703 initial_epoch=initial_epoch,
1704 steps_per_epoch=steps_per_epoch,
-> 1705 validation_steps=validation_steps)
1706
1707 def evaluate(self, x=None, y=None,
~/anaconda3/lib/python3.6/site-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
1233 ins_batch[i] = ins_batch[i].toarray()
1234
-> 1235 outs = f(ins_batch)
1236 if not isinstance(outs, list):
1237 outs = [outs]
~/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2476 session = get_session()
2477 updated = session.run(fetches=fetches, feed_dict=feed_dict,
-> 2478 **self.session_kwargs)
2479 return updated[:len(self.outputs)]
2480
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
787 try:
788 result = self._run(None, fetches, feed_dict, options_ptr,
--> 789 run_metadata_ptr)
790 if run_metadata:
791 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
995 if final_fetches or final_targets:
996 results = self._do_run(handle, final_targets, final_fetches,
--> 997 feed_dict_string, options, run_metadata)
998 else:
999 results = []
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1130 if handle is None:
1131 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1132 target_list, options, run_metadata)
1133 else:
1134 return self._do_call(_prun_fn, self._session, handle, feed_dict,
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1137 def _do_call(self, fn, *args):
1138 try:
-> 1139 return fn(*args)
1140 except errors.OpError as e:
1141 message = compat.as_text(e.message)
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1119 return tf_session.TF_Run(session, options,
1120 feed_dict, fetch_list, target_list,
-> 1121 status, run_metadata)
1122
1123 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: