In [234]:
import numpy as np

In [235]:
### Creating ndarrays

In [236]:
data = {i : np.random.randn() for i in range(6)}

In [237]:
data


Out[237]:
{0: -0.08730089878649104,
 1: -0.24144139630183212,
 2: 1.0494958953335303,
 3: -0.9562884089145647,
 4: -0.49534433469939876,
 5: 0.4534923168092112}

In [238]:
data2 = [[1,2,3,4],[1,4,9,16]]

In [239]:
arr2 = np.array(data2)

In [240]:
arr2


Out[240]:
array([[ 1,  2,  3,  4],
       [ 1,  4,  9, 16]])

In [241]:
print(arr2)


[[ 1  2  3  4]
 [ 1  4  9 16]]

In [242]:
arr2.ndim


Out[242]:
2

In [243]:
arr2.shape


Out[243]:
(2, 4)

In [244]:
arr2.dtype


Out[244]:
dtype('int32')

In [245]:
a = np.zeros(10)

In [246]:
a


Out[246]:
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [247]:
b = np.ones(10)

In [248]:
b


Out[248]:
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

In [249]:
a1 = np.zeros((3, 6))

In [250]:
a1


Out[250]:
array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

In [251]:
c = np.empty((2, 3, 2))

In [252]:
c


Out[252]:
array([[[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]],

       [[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]]])

In [253]:
c.dtype


Out[253]:
dtype('float64')

In [254]:
d = np.arange(15)

In [255]:
d


Out[255]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [256]:
e = np.ones_like(c)

In [257]:
e


Out[257]:
array([[[ 1.,  1.],
        [ 1.,  1.],
        [ 1.,  1.]],

       [[ 1.,  1.],
        [ 1.,  1.],
        [ 1.,  1.]]])

In [258]:
f = np.eye(10)

In [259]:
f


Out[259]:
array([[ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.]])

In [260]:
### Data Types for ndarrays

In [261]:
array1 = np.array([1, 2, 3, 4], dtype = np.float64)

In [262]:
array2 = np.array([1, 2, 3, 4], dtype = np.int32)

In [263]:
array1.dtype


Out[263]:
dtype('float64')

In [264]:
array2.dtype


Out[264]:
dtype('int32')

In [265]:
arr_string = np.array(['1.32','6.87','5.0'], dtype = np.string_)

In [266]:
arr_float = arr_string.astype(np.float64)

In [267]:
arr_float


Out[267]:
array([ 1.32,  6.87,  5.  ])

In [268]:
### Operations between Arrays and Scalars

In [269]:
arr = np.array([[1., 2. ,3.], [4., 5., 6.]], dtype=float)

In [270]:
arr


Out[270]:
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [271]:
arr*arr


Out[271]:
array([[  1.,   4.,   9.],
       [ 16.,  25.,  36.]])

In [272]:
arr-arr


Out[272]:
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])

In [273]:
1/arr


Out[273]:
array([[ 1.        ,  0.5       ,  0.33333333],
       [ 0.25      ,  0.2       ,  0.16666667]])

In [274]:
arr**0.5


Out[274]:
array([[ 1.        ,  1.41421356,  1.73205081],
       [ 2.        ,  2.23606798,  2.44948974]])

In [275]:
### Basic Indexing and Slicing

In [276]:
arr = np.arange(15)

In [277]:
arr[3:8]


Out[277]:
array([3, 4, 5, 6, 7])

In [278]:
'''
An important first distinction from lists is that array slices are views on the original array. This means that
the data is not copied, and any modifications to the view will be reflected in the source array
'''


Out[278]:
'\nAn important first distinction from lists is that array slices are views on the original array. This means that\nthe data is not copied, and any modifications to the view will be reflected in the source array\n'

In [279]:
slice = arr[3:8]

In [280]:
slice[2] = 112

In [281]:
arr


Out[281]:
array([  0,   1,   2,   3,   4, 112,   6,   7,   8,   9,  10,  11,  12,
        13,  14])

In [282]:
slice[3:6] = 12

In [283]:
arr


Out[283]:
array([  0,   1,   2,   3,   4, 112,  12,  12,   8,   9,  10,  11,  12,
        13,  14])

In [284]:
### If you want a copy of a slice of an ndarray instead of a view, you will need to explicitly copy the array

In [285]:
array = np.arange(15)

In [286]:
slice = array[3:8].copy()

In [287]:
slice[:] = 12

In [288]:
slice


Out[288]:
array([12, 12, 12, 12, 12])

In [289]:
array


Out[289]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [290]:
### higher dimensional arrays

In [291]:
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

In [292]:
arr2d[2][1]


Out[292]:
8

In [293]:
arr2d[2,1]


Out[293]:
8

In [294]:
arr2d[1, :2]


Out[294]:
array([4, 5])

In [295]:
arr2d[1, :2].shape


Out[295]:
(2,)

In [296]:
arr2d[1:2, :2]


Out[296]:
array([[4, 5]])

In [297]:
arr2d[1:2, :2].shape


Out[297]:
(1, 2)

In [298]:
arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [299]:
arr3d[0]


Out[299]:
array([[1, 2, 3],
       [4, 5, 6]])

In [300]:
arr3d[0,1]


Out[300]:
array([4, 5, 6])

In [301]:
arr3d[0,1,0]


Out[301]:
4

In [302]:
old_values = arr3d[0].copy()

In [303]:
old_values


Out[303]:
array([[1, 2, 3],
       [4, 5, 6]])

In [304]:
arr3d[0] = 42

In [305]:
arr3d


Out[305]:
array([[[42, 42, 42],
        [42, 42, 42]],

       [[ 7,  8,  9],
        [10, 11, 12]]])

In [306]:
arr3d[0] = old_values

In [307]:
arr3d


Out[307]:
array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[ 7,  8,  9],
        [10, 11, 12]]])

In [308]:
arr2d


Out[308]:
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [309]:
arr2d[:2]


Out[309]:
array([[1, 2, 3],
       [4, 5, 6]])

In [310]:
arr2d[:2,:2]


Out[310]:
array([[1, 2],
       [4, 5]])

In [311]:
### Boolean Indexing

In [312]:
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [313]:
data = np.random.randn(7,4)

In [314]:
data


Out[314]:
array([[ 0.10289297,  2.90246559,  2.27300433, -0.87664228],
       [ 0.28073289, -0.36370018,  0.59231769, -0.67343579],
       [-0.79142045,  0.89950742,  0.60077744, -0.77022984],
       [ 0.03157877, -1.28593835,  0.13791617, -0.81559219],
       [ 0.6814858 ,  1.55010797,  0.6058013 , -1.34349395],
       [-1.66586023, -1.56269374,  0.94419005,  0.58805994],
       [ 0.63490795,  1.43822816,  2.55016348,  0.34348943]])

In [315]:
names == 'Bob'


Out[315]:
array([ True, False, False,  True, False, False, False], dtype=bool)

In [316]:
data[names == 'Bob']


Out[316]:
array([[ 0.10289297,  2.90246559,  2.27300433, -0.87664228],
       [ 0.03157877, -1.28593835,  0.13791617, -0.81559219]])

In [317]:
data[names == 'Bob', 2:]


Out[317]:
array([[ 2.27300433, -0.87664228],
       [ 0.13791617, -0.81559219]])

In [318]:
data[names == 'Bob', 2]


Out[318]:
array([ 2.27300433,  0.13791617])

In [319]:
data[names != 'Bob']


Out[319]:
array([[ 0.28073289, -0.36370018,  0.59231769, -0.67343579],
       [-0.79142045,  0.89950742,  0.60077744, -0.77022984],
       [ 0.6814858 ,  1.55010797,  0.6058013 , -1.34349395],
       [-1.66586023, -1.56269374,  0.94419005,  0.58805994],
       [ 0.63490795,  1.43822816,  2.55016348,  0.34348943]])

In [320]:
data[~(names == 'Bob')]


Out[320]:
array([[ 0.28073289, -0.36370018,  0.59231769, -0.67343579],
       [-0.79142045,  0.89950742,  0.60077744, -0.77022984],
       [ 0.6814858 ,  1.55010797,  0.6058013 , -1.34349395],
       [-1.66586023, -1.56269374,  0.94419005,  0.58805994],
       [ 0.63490795,  1.43822816,  2.55016348,  0.34348943]])

In [321]:
data[(names == 'Bob') | (names == 'Will')]


Out[321]:
array([[ 0.10289297,  2.90246559,  2.27300433, -0.87664228],
       [-0.79142045,  0.89950742,  0.60077744, -0.77022984],
       [ 0.03157877, -1.28593835,  0.13791617, -0.81559219],
       [ 0.6814858 ,  1.55010797,  0.6058013 , -1.34349395]])

In [322]:
data[data < 0] = 0

In [323]:
data


Out[323]:
array([[ 0.10289297,  2.90246559,  2.27300433,  0.        ],
       [ 0.28073289,  0.        ,  0.59231769,  0.        ],
       [ 0.        ,  0.89950742,  0.60077744,  0.        ],
       [ 0.03157877,  0.        ,  0.13791617,  0.        ],
       [ 0.6814858 ,  1.55010797,  0.6058013 ,  0.        ],
       [ 0.        ,  0.        ,  0.94419005,  0.58805994],
       [ 0.63490795,  1.43822816,  2.55016348,  0.34348943]])

In [324]:
data[names != 'Joe'] = 7

In [325]:
data


Out[325]:
array([[ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 0.28073289,  0.        ,  0.59231769,  0.        ],
       [ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 7.        ,  7.        ,  7.        ,  7.        ],
       [ 0.        ,  0.        ,  0.94419005,  0.58805994],
       [ 0.63490795,  1.43822816,  2.55016348,  0.34348943]])

In [326]:
### Fancy Indexing

In [327]:
arr = np.empty((8, 4))

In [328]:
arr


Out[328]:
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])

In [329]:
for i in range(8):
    arr[i] = i

In [330]:
arr


Out[330]:
array([[ 0.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  1.],
       [ 2.,  2.,  2.,  2.],
       [ 3.,  3.,  3.,  3.],
       [ 4.,  4.,  4.,  4.],
       [ 5.,  5.,  5.,  5.],
       [ 6.,  6.,  6.,  6.],
       [ 7.,  7.,  7.,  7.]])

In [331]:
arr[[4, 3, 2, 5]]


Out[331]:
array([[ 4.,  4.,  4.,  4.],
       [ 3.,  3.,  3.,  3.],
       [ 2.,  2.,  2.,  2.],
       [ 5.,  5.,  5.,  5.]])

In [332]:
arr[[-3, -5, -7]]


Out[332]:
array([[ 5.,  5.,  5.,  5.],
       [ 3.,  3.,  3.,  3.],
       [ 1.,  1.,  1.,  1.]])

In [333]:
arr = np.arange(32).reshape(8, 4)

In [334]:
arr


Out[334]:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [335]:
arr[[1, 5, 7, 2], [0, 3, 1, 2]]


Out[335]:
array([ 4, 23, 29, 10])

In [336]:
arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]


Out[336]:
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

In [337]:
arr[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]


Out[337]:
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

In [338]:
np.ix_([1, 5, 7, 2], [0, 3, 1, 2])


Out[338]:
(array([[1],
        [5],
        [7],
        [2]]), array([[0, 3, 1, 2]]))

In [339]:
### Transposing Arrays and Swapping Axes

In [340]:
arr = np.arange(15).reshape((3,5))

In [341]:
arr


Out[341]:
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [342]:
arr.T


Out[342]:
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

In [343]:
np.dot(arr.T, arr)


Out[343]:
array([[125, 140, 155, 170, 185],
       [140, 158, 176, 194, 212],
       [155, 176, 197, 218, 239],
       [170, 194, 218, 242, 266],
       [185, 212, 239, 266, 293]])

In [344]:
np.dot(arr, arr.T)


Out[344]:
array([[ 30,  80, 130],
       [ 80, 255, 430],
       [130, 430, 730]])

In [345]:
arr = np.arange(16).reshape(2, 2, 4)

In [346]:
arr


Out[346]:
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],

       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [347]:
arr.transpose(1, 0, 2)


Out[347]:
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],

       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])

In [348]:
arr.swapaxes(1, 2)


Out[348]:
array([[[ 0,  4],
        [ 1,  5],
        [ 2,  6],
        [ 3,  7]],

       [[ 8, 12],
        [ 9, 13],
        [10, 14],
        [11, 15]]])

In [349]:
arr


Out[349]:
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],

       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [350]:
### Universal Functions: Fast Element-wise Array Functions

In [351]:
arr = np.arange(10)

In [352]:
np.sqrt(arr)


Out[352]:
array([ 0.        ,  1.        ,  1.41421356,  1.73205081,  2.        ,
        2.23606798,  2.44948974,  2.64575131,  2.82842712,  3.        ])

In [353]:
np.exp(arr)


Out[353]:
array([  1.00000000e+00,   2.71828183e+00,   7.38905610e+00,
         2.00855369e+01,   5.45981500e+01,   1.48413159e+02,
         4.03428793e+02,   1.09663316e+03,   2.98095799e+03,
         8.10308393e+03])

In [360]:
x, y = np.random.randn(8), np.random.randn(8)

In [361]:
np.maximum(x, y)


Out[361]:
array([ 1.56990835,  2.27947146,  0.30208168,  1.16897605,  1.65010192,
        0.84616608,  0.52930149,  1.29454268])

In [364]:
arr = np.random.randn(7)*5
arr


Out[364]:
array([ 7.22846789, -8.46133524,  3.5496447 , -8.61704727, -4.40502151,
       -3.77209693,  4.00360582])

In [365]:
np.modf(arr)


Out[365]:
(array([ 0.22846789, -0.46133524,  0.5496447 , -0.61704727, -0.40502151,
        -0.77209693,  0.00360582]), array([ 7., -8.,  3., -8., -4., -3.,  4.]))

In [367]:
np.floor(arr)


Out[367]:
array([ 7., -9.,  3., -9., -5., -4.,  4.])

In [368]:
np.ceil(arr)


Out[368]:
array([ 8., -8.,  4., -8., -4., -3.,  5.])

In [369]:
np.rint(arr)


Out[369]:
array([ 7., -8.,  4., -9., -4., -4.,  4.])

In [370]:
np.isnan(arr)


Out[370]:
array([False, False, False, False, False, False, False], dtype=bool)

In [372]:
a, b = np.arange(10), np.arange(10,20)
a, b


Out[372]:
(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]))

In [373]:
np.multiply(a, b)


Out[373]:
array([  0,  11,  24,  39,  56,  75,  96, 119, 144, 171])

In [ ]:


In [ ]:


In [ ]: