In [40]:
from __future__ import division
from scipy import stats
import random, pymongo
import sklearn.metrics as metrics
import matplotlib.pyplot as plt
import pandas as pd
import rpy2.robjects as robjects
%matplotlib inline
In [41]:
r = robjects.r
In [42]:
connection = pymongo.MongoClient('localhost', 27017)
results_db = connection['results']['question_1']
cursor = results_db.find({}, {u'_id': False, u'community':True,
u'comments_pvalue':True,u'questions_pvalue':True,
u'answers_pvalue':True, u'contributions_pvalue':True})
stats_df = pd.DataFrame(list(cursor))
communities = list(stats_df['community'])
In [46]:
for index, row in stats_df.iterrows():
community = row['community']
community_db = connection[community]['statistics']
cursor = community_db.find({'contributions_total': {'$gt':0}},
{u'_id': False, u'comments_total':True, u'gender':True,
u'questions_total':True, u'contributions_total':True,
u'answers_total':True})
df = pd.DataFrame(list(cursor))
females = df.query("gender == 'Female'")
males = df.query("gender == 'Male'")
questions = r['wilcox.test'](robjects.IntVector(list(females['questions_total'])),
robjects.IntVector(list(males['questions_total'])),
alternative="g", correct=True, exact=False)[2][0]
answers = r['wilcox.test'](robjects.IntVector(list(females['answers_total'])),
robjects.IntVector(list(males['answers_total'])),
alternative="g", correct=True, exact=False)[2][0]
comments = r['wilcox.test'](robjects.IntVector(list(females['comments_total'])),
robjects.IntVector(list(males['comments_total'])),
alternative="g", correct=True, exact=False)[2][0]
contributions = r['wilcox.test'](robjects.IntVector(list(females['contributions_total'])),
robjects.IntVector(list(males['contributions_total'])),
alternative="g", correct=True, exact=False)[2][0]
results_db.update({'community': community}, {'$set': {'questions_pvalue_greater': questions,
'answers_pvalue_greater': answers,
'comments_pvalue_greater': comments,
'contributions_pvalue_greater': contributions}})
In [ ]: