In [1]:
from __future__ import division
from scipy import stats
import random, pymongo
import sklearn.metrics as metrics
import matplotlib.pyplot as plt
import pandas as pd
import rpy2.robjects as robjects
%matplotlib inline
In [2]:
r = robjects.r
In [22]:
connection = pymongo.MongoClient('localhost', 27017)
results_db = connection['results']['question_2']
cursor = results_db.find({'community':{'$nin':["ham", "startups", "poker"]}}, {u'_id': False, u'community':True,
u'mean_utility_pvalue':True,u'acc_rate_pvalue':True,
u'questions_avg_pvalue':True})
stats_df = pd.DataFrame(list(cursor))
In [23]:
for index, row in stats_df.iterrows():
community = row['community']
community_db = connection[community]['statistics']
cursor = community_db.find({'contributions_total': {'$gt':0}},
{u'_id': False, u'accepted_rate':True, u'gender':True,
u'mean_utility':True, u'questions_avg':True})
df = pd.DataFrame(list(cursor))
females = df.query("gender == 'Female'")
males = df.query("gender == 'Male'")
accepted_rate = r['wilcox.test'](robjects.FloatVector(list(females['accepted_rate'])),
robjects.FloatVector(list(males['accepted_rate'])),
alternative="g", correct=True, exact=False)[2][0]
mean_utility = r['wilcox.test'](robjects.FloatVector(list(females['mean_utility'])),
robjects.FloatVector(list(males['mean_utility'])),
alternative="g", correct=True, exact=False)[2][0]
questions_avg = r['wilcox.test'](robjects.FloatVector(list(females['questions_avg'])),
robjects.FloatVector(list(males['questions_avg'])),
alternative="g", correct=True, exact=False)[2][0]
results_db.update({'community': community}, {'$set': {'acc_rate_pvalue_greater': accepted_rate,
'mean_utility_pvalue_greater': mean_utility,
'questions_avg_pvalue_greater': questions_avg}})
In [ ]: