In [ ]:
import pandas as pd
from random import random

pd.set_option('display.max_columns', 500)

def a1_notation(n):
    string = ""
    while n > 0:
        n, remainder = divmod(n - 1, 26)
        string = chr(65 + remainder) + string
    return string

In [ ]:
alist = list(range(1, 31))
list_of_lists = [[round(random() * 100) for x in alist] for x in alist]
A1_list = [a1_notation(x) for x in alist]
df = pd.DataFrame(list_of_lists, columns=A1_list)
df

In [ ]:
df.C.mean()

In [ ]:
df['C'].mean()

In [ ]:
df[['A', 'C', 'E']].mean()

In [ ]:
df.loc[:, ['A', 'C', 'E']].mean()

In [ ]:
df.loc[:, 'A':'E'].mean()

In [ ]:
df.describe()

In [ ]:
df.agg('sum')

In [ ]:
df.agg('sum').A

In [ ]:
df.agg('sum').loc['J':'R']

In [ ]:
df.loc[:, 'J':'R'].sum()

In [ ]:
df.agg(['sum', 'min', 'mean'])

In [ ]:
df.loc[:, 'A':'E'].agg('mean')

In [ ]:
df.loc[:, 'F':'I'].agg('min')

In [ ]:
df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})

In [ ]:
df.agg({'A' : 'mean', 'B' : 'mean', 'F': 'min', 'G': 'max'})

In [ ]:
df.agg({'A' : ['min', 'max', 'mean', 'sum']})

In [ ]:
df.A.mean()

In [ ]:
import numpy as np
np.mean(df.A)