In [ ]:
import pandas as pd
from random import random
pd.set_option('display.max_columns', 500)
def a1_notation(n):
string = ""
while n > 0:
n, remainder = divmod(n - 1, 26)
string = chr(65 + remainder) + string
return string
In [ ]:
alist = list(range(1, 31))
list_of_lists = [[round(random() * 100) for x in alist] for x in alist]
A1_list = [a1_notation(x) for x in alist]
df = pd.DataFrame(list_of_lists, columns=A1_list)
df
In [ ]:
df.C.mean()
In [ ]:
df['C'].mean()
In [ ]:
df[['A', 'C', 'E']].mean()
In [ ]:
df.loc[:, ['A', 'C', 'E']].mean()
In [ ]:
df.loc[:, 'A':'E'].mean()
In [ ]:
df.describe()
In [ ]:
df.agg('sum')
In [ ]:
df.agg('sum').A
In [ ]:
df.agg('sum').loc['J':'R']
In [ ]:
df.loc[:, 'J':'R'].sum()
In [ ]:
df.agg(['sum', 'min', 'mean'])
In [ ]:
df.loc[:, 'A':'E'].agg('mean')
In [ ]:
df.loc[:, 'F':'I'].agg('min')
In [ ]:
df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
In [ ]:
df.agg({'A' : 'mean', 'B' : 'mean', 'F': 'min', 'G': 'max'})
In [ ]:
df.agg({'A' : ['min', 'max', 'mean', 'sum']})
In [ ]:
df.A.mean()
In [ ]:
import numpy as np
np.mean(df.A)