In [31]:
from __future__ import print_function
%matplotlib inline
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
import pandas as pd
In [32]:
rng = numpy.random
In [33]:
# Different parameters for learning
learning_rate = 0.01
training_epochs = 1000
display_step = 100
In [34]:
#import data
df= pd.read_csv("../data/mon.csv")
#divisione train & test set modo 1
#train=df.sample(frac=0.8,random_state=200)
#test=df.drop(train.index)
#divisione train & test set modo 2
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size = 0.2)
In [35]:
train.head(5)
Out[35]:
In [36]:
#creo train & test set
train_X = train['sys']
train_Y = train['hr']
n_samples = train_X.shape[0]
test_X = test['sys']
test_Y = test['hr']
In [37]:
type(train_X)
Out[37]:
In [38]:
# Training Data
#train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
#train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
#n_samples = train_X.shape[0]
In [39]:
# Create placeholder for providing inputs
X = tf.placeholder("float")
Y = tf.placeholder("float")
In [40]:
# create weights and bias and initialize with random number
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
In [41]:
# Construct a linear model using Y=WX+b
pred = tf.add(tf.mul(X, W), b)
In [42]:
# Calculate Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
In [43]:
# Gradient descent to minimize mean sequare error
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
In [44]:
# Initializing the variables
# init = tf.initialize_all_variables
init = tf.global_variables_initializer()
In [45]:
# Launch the graph
with tf.Session() as sess:
sess.run(init)
print("Training started")
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
#create small batch of trining and testing data and feed it to model
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display training information after each N step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Training completed")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Testing
print("Testing started")
#test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
#test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
#Calculate Mean square error
print("Calculate Mean square error")
testing_cost = sess.run(tf.reduce_sum(tf.pow(pred-Y, 2)) / (2 * test_X.shape[0]),feed_dict={X: test_X, Y: test_Y}) # same function as cost above
print("Testing cost=", testing_cost)
print("Absolute mean square loss difference:", abs(training_cost - testing_cost))
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: