In [1]:
from pathlib import Path
from pyuvis.io import FUV, HSP, UVIS_NetCDF
In [11]:
folder = %path /Users/klay6683/Dropbox/SternchenAndMe/Enceladus_stuff/UVIS/UVIS_Enc_Occ_2005_07_14/
folder
Out[11]:
In [12]:
fuvfiles = list(folder.glob('*FUV*'))
In [13]:
fuvfiles
Out[13]:
In [14]:
fuv = FUV(fuvfiles[0])
In [15]:
fuv.data
Out[15]:
In [21]:
df = pd.DataFrame(np.random.randn(6,3))
df
Out[21]:
In [24]:
df.index = pd.date_range('now', frequency='1d', periods=6)
In [25]:
df
Out[25]:
In [26]:
df.index[0]
Out[26]:
In [28]:
import spiceypy as spice
In [32]:
spice.furnsh("/Users/klay6683/Dropbox/SternchenAndMe/SPICE_kernels/lsk/naif0011.tls")
In [33]:
[spice.utc2et(str(i)) for i in df.index]
Out[33]:
In [ ]:
In [ ]:
In [19]:
fuv.
In [24]:
%matplotlib inline
In [25]:
import seaborn as sns
sns.set_context('notebook')
In [26]:
fig, ax = plt.subplots(figsize=(8,6))
fuv.data[:,0].plot(ax=ax)
fig.tight_layout()
In [28]:
fuv.data[:, 1, 100].plot()
plt.tight_layout()
In [30]:
plt.figure()
fuv.data.mean(['spatial_dim_0', 'wavelengths']).plot()
Out[30]:
In [31]:
spec = fuv.data[100]
In [32]:
spec
Out[32]:
In [34]:
p = Path('./plots')
In [35]:
plt.figure()
fuv.data[0][1].plot()
Out[35]:
In [36]:
plt.figure()
fuv.data[:,1,100].plot()
Out[36]:
In [40]:
plt.figure()
fuv.data.sum(['wavelengths'])[:, 1].plot()
Out[40]:
In [ ]: