In [1]:
# At the beginning of the notebook
import logging
import sys
logger = logging.getLogger('planet4')
ch = logging.StreamHandler(sys.stderr)
# fmt = logging.Formatter('%(name)s - %(message)s')
fmt = logging.Formatter('%(message)s')
ch.setFormatter(fmt)
logger.addHandler(ch)
In [3]:
logger.setLevel(logging.DEBUG)
In [2]:
# setup
%matplotlib nbagg
import seaborn as sns
sns.set_context('notebook')
from planet4 import plotting, io, markings, clustering
from pathlib import Path
In [21]:
id_ = 'bnb'
# id_ = 'c0b'
# id_ = 'c0q'
In [12]:
io.PathManager('br5').obsid
Out[12]:
In [22]:
plotting.plot_raw_fans(id_)
In [23]:
plotting.plot_raw_blotches(id_)
In [24]:
plotting.plot_clustered_blotches(id_)
Out[24]:
In [9]:
plotting.plot_clustered_fans(id_)
Out[9]:
In [9]:
plotting.blotches_all(id_)
In [10]:
plotting.fans_all(id_)
In [22]:
db = io.DBManager()
In [24]:
image_names = io.get_image_names_from_db(db.dbname)
In [25]:
len(image_names)
Out[25]:
In [20]:
plotting.plot_finals('bnb')
In [18]:
pm = io.PathManager('bz7')
In [19]:
pm.path_so_far
Out[19]:
In [22]:
pm2 = io.PathManager('bz7', datapath=pm.path_so_far.parent)
In [23]:
pm2.path_so_far
Out[23]:
In [20]:
plotting.plot_image_id_pipeline(id_, save=True)
In [8]:
a1 = np.array([252.3, 243.9])
a1.shape = (1,2)
a2 = np.array([267.3, 249.4])
a2.shape = (1,2)
In [9]:
from scipy.spatial.distance import cdist
In [10]:
cdist(a1, a2)
Out[10]:
In [ ]:
plotting.plot_raw_blotches(id_)
In [ ]:
plotting.plot_clustered_fans(id_)
In [ ]:
plotting.plot_clustered_blotches(id_)
In [ ]:
plotting.plot_finals(id_)