Table of Contents

    The following command line launches the parallel ipython cores:

    
    
    In [ ]:
    !ipcluster start -n 4
    
    
    
    In [ ]:
    from nbtools import execute_in_parallel
    from planet4 import io
    db = io.DBManager()
    data = db.get_image_id_markings('bo3')[:10]
    def calc_stuff(fpath):
        d = {'path': fpath}
        d['length'] = len(pd.read_csv(fpath))
        return d
    results = execute_in_parallel(calc_stuff, data)
    df = pd.DataFrame(results.result)
    
    
    
    In [ ]:
    from planet4 import markings, io, plotting
    import seaborn as sns
    sns.set_context('paper')
    
    
    
    In [ ]:
    from planet4 import io
    db= io.DBManager()
    print(db.dbname)
    data = db.get_image_id_markings('bo3')
    print('Shape:',data.shape)
    
    
    
    In [ ]:
    from configparser import ConfigParser
    config = ConfigParser()
    config.read("/Users/klay6683/.pyciss.ini")
    config['paths']['my_mac']
    
    
    
    In [ ]:
    df = db.get_image_id_markings('6n3')
    
    
    
    In [ ]:
    df.classification_id.nunique()
    
    
    
    In [ ]:
    p4id = markings.ImageID('6n3')
    
    
    
    In [ ]:
    %matplotlib inline
    
    
    
    In [ ]:
    fig, ax = plt.subplots(ncols=2, figsize=(16,5))
    p4id.show_subframe(ax[0])
    p4id.plot_fans(lw=1, ax=ax[1])
    fig.tight_layout()
    ax[0].set_title(f"{p4id.imgid}, original input")
    ax[1].set_title(f"{p4id.imgid}, Planet Four fan markings")
    plt.savefig("/Users/klay6683/Dropbox/src/p4_paper1/figures/fan_markings.png",
                bbox_inches='tight',
                dpi=200)
    
    
    
    In [ ]:
    print(id_.data.image_url.iloc[0])
    
    
    
    In [ ]:
    p4id = markings.ImageID('1aa')
    
    
    
    In [ ]:
    plotting.plot_image_id_pipeline('1aa', datapath='catalog_1.0b2', save=True, savetitle='pipeline',
                                    saveroot='/Users/klay6683/Dropbox/src/p4_paper1/figures/')
    
    
    
    In [ ]: