In [1]:
fnames = io.l1a_filenames("dark", iterator=False, stage=False)

In [3]:
len(fnames)


Out[3]:
6307

In [5]:
from IPython.parallel import Client
c = Client()

In [6]:
dview = c.direct_view()
lview = c.load_balanced_view()

In [7]:
l1a = io.L1AReader(fnames[0])

In [8]:
io.get_header_df(l1a.hdulist[0]).T.convert_objects()


Out[8]:
SIMPLE BITPIX NAXIS NAXIS1 NAXIS2 NAXIS3 EXTEND BLANK FILENAME CAPTURE ... OBS_ID INT_TIME MCP_VOLT MIR_DEG N_FILL BIN_TBL SPA_OFS SPA_SIZE SPE_OFS SPE_SIZE
0 True 32 3 256 10 21 True -1 mvn_iuv_l1a_apoapse-orbit00626-fuvdark_2015012... 2015/025 Jan 25 15:33:02.76293UTC ... 8198 14.4 -1.83 32.901 0 LINEAR 15,16 linear_0006 89 80 0 4

1 rows × 23 columns


In [13]:
integration_df = l1a.Integration.T.set_index('ET')

In [17]:
integration_df['mean'] = l1a.img.mean(axis=(1,2))

In [18]:
integration_df['std'] = l1a.img.std(axis=(1,2))

In [33]:
for col in l1a.Observation.columns:
    print(col.name)


PRODUCT_ID
COLLECTION_ID
BUNDLE_ID
CODE_SVN_REVISION
ANC_SVN_REVISION
PRODUCT_CREATION_DATE
OBSERVATION_TYPE
MISSION_PHASE
TARGET_NAME
ORBIT_SEGMENT
ORBIT_NUMBER
SOLAR_LONGITUDE
GRATING_SELECT
KEYHOLE_SELECT
BIN_PATTERN_INDEX
CADENCE
INT_TIME
DUTY_CYCLE
CHANNEL
WAVELENGTH
WAVELENGTH_WIDTH
KERNELS

In [6]:
def process_fname(fname):
    import numpy as np
    l1a = io.L1AReader(fname)
    header_df = io.get_header_df(l1a.hdulist[0]).T.convert_objects()
    if header_df['NAXIS'] == 2:
        header_df['NAXIS3'] = np.nan
    header_df.drop(['XUV', 'OBS_ID', 'INT_TIME'], axis=1, inplace=True)
    df = pd.concat([header_df,
                    l1a.Engineering.T.convert_objects(),],
                   axis=1)
    df['primary_mean'] = l1a.img.mean()
    df['primary_std'] = l1a.img.std()
    if df.size != 61:
        return df, False
    else:
        savepath = io.save_to_hdf(df, fname, 'l1a_dark_scans')
        return df, True

In [7]:
results = lview.map_async(process_fname, fnames)

In [36]:
size_not_61 = []
dfs = []
for res in results:
    if not res[1]:
        size_not_61.append(res[0].FILENAME)
        dfs.append(res[0])

In [38]:
pd.concat(dfs, axis=0)


Out[38]:
AVERAGE BIN_SHIFT BIN_SHIFT_DIR BIN_TBL BIN_TYPE BIN_X_ROW BIN_Y_ROW BITPIX BLANK BSCALE ... START_TIME START_TIME__SUB STEP_INT STEP_NUM STEP_SIZE SW_VER TEST_PATTERN TIME_FLAG XUV primary_mean
0 1922 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 480692579 27611 3 315 14 915 12 Synced FUV 2663.203505
0 61733 4 1 NON LINEAR 13,13 nonlin_0001 NON LINEAR 13 13 32 -1 NaN ... 471877268 49002 3 60 14 -1 12 Synced MUV 42290.504348
0 20721 0 0 NON LINEAR 12,12 nonlin_0001 NON LINEAR 12 12 32 -1 NaN ... 471616886 64371 3 315 14 -1 12 Synced FUV 53130.544629
0 2413 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 478823096 65025 3 315 14 -1 12 Synced MUV 3223.514683
0 1328 0 0 LINEAR 5,6 linear_0011 LINEAR 5 6 32 -1 NaN ... 480734258 40827 255 0 -1 917 12 Synced FUV 971.874286
0 7683 4 0 LINEAR 7,8 linear_0011 LINEAR 7 8 32 -1 NaN ... 480326751 11588 3 101 13 911:913 12 Synced MUV 53573.423197
0 9966 6 1 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 478940579 22379 3 315 14 911 12 Synced MUV 61692.067361
0 9440 1 1 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479731313 143 3 315 14 911 12 Synced FUV 15389.216402
0 17650 0 0 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 478630201 7337 3 315 14 -1 12 Synced FUV 32192.207490
0 32111 0 0 LINEAR 0,19 linear_0011 LINEAR 0 19 32 -1 NaN ... 479222776 1124 255 0 -1 911 12 Synced MUV 23181.817627
0 3821 0 0 LINEAR 5,6 linear_0011 LINEAR 5 6 32 -1 NaN ... 479190975 33497 255 0 -1 911 12 Synced FUV 2794.985000
0 3360 0 0 LINEAR 17,18 linear_0009 LINEAR 17 18 32 -1 NaN ... 478614286 31208 3 315 14 -1 12 Synced MUV 17964.374603
0 1928 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 480694505 26957 3 315 14 917 12 Synced FUV 2678.315807
0 5421 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 478843182 5702 3 315 14 -1 12 Synced MUV 57163.442758
0 2536 1 1 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 479602728 64044 3 315 14 911 12 Synced MUV 5439.402083
0 3383 0 0 LINEAR 17,18 linear_0009 LINEAR 17 18 32 -1 NaN ... 477933423 470 3 315 14 -1 12 Synced MUV 110870.110159
0 14467 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479767037 64044 3 315 14 911 12 Synced FUV 38898.092725
0 3623 0 0 LINEAR 17,18 linear_0009 LINEAR 17 18 32 -1 NaN ... 478093770 60120 3 315 14 -1 12 Synced MUV 12729.946032
0 5143 0 0 NON LINEAR 13,13 nonlin_0001 NON LINEAR 13 13 32 -1 NaN ... 470907305 62736 3 315 14 -1 12 Synced MUV 11332.875983
0 2242 0 0 LINEAR 7,8 linear_0009 LINEAR 7 8 32 -1 NaN ... 478281964 6029 3 101 -11 -1 12 Synced MUV 1372.002551
0 31456 0 0 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 476310944 43770 3 315 14 -1 12 Synced FUV 36074.099107
0 2197 0 0 LINEAR 11,12 linear_0006 LINEAR 11 12 32 -1 NaN ... 476234113 4067 255 0 -1 -1 12 Synced FUV 2014.989177
0 1871 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479929291 5375 3 315 14 911:913 12 Synced FUV 2691.514286
0 7832 1 1 LINEAR 5,6 linear_0011 LINEAR 5 6 32 -1 NaN ... 479855767 19109 3 101 25 911:913 12 Synced FUV 6816.452075
0 3616 0 0 LINEAR 17,18 linear_0009 LINEAR 17 18 32 -1 NaN ... 478158677 13223 3 315 14 -1 12 Synced MUV 12632.639365
0 17555 0 0 LINEAR 7,8 linear_0009 LINEAR 7 8 32 -1 NaN ... 478119049 32189 3 101 25 -1 12 Synced MUV 32868.954932
0 12086 1 1 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479539418 26957 3 315 14 911 12 Synced FUV 15807.014087
0 60617 0 0 NON LINEAR 13,13 nonlin_0001 NON LINEAR 13 13 32 -1 NaN ... 471794791 36767 3 60 14 -1 12 Synced MUV 41484.841304
0 16958 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 478777923 5375 3 315 14 -1 12 Synced FUV 35438.433333
0 2407 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 480888932 42135 3 315 14 917 12 Synced MUV 2505.559028
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
0 61 0 0 LINEAR 1,2 linear_0006 LINEAR 1 2 32 -1 NaN ... 477247772 17474 255 0 -1 -1 12 Synced FUV 260.983333
0 16164 3 1 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479328811 2105 3 315 14 911 12 Synced FUV 40920.806283
0 4992 4 1 NON LINEAR 13,13 nonlin_0001 NON LINEAR 13 13 32 -1 NaN ... 471913787 56523 3 315 14 -1 12 Synced MUV 11234.824845
0 22201 1 1 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 476628472 36440 3 315 14 -1 12 Synced FUV 34976.648165
0 1920 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 480674402 3740 3 315 14 915 12 Synced FUV 2730.076058
0 21764 0 0 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 476792734 1124 3 315 14 -1 12 Synced FUV 38581.768204
0 14944 0 0 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 478126226 45078 3 315 14 -1 12 Synced FUV 15213.472470
0 2297 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 480985245 29900 3 315 14 917 12 Synced MUV 2496.904663
0 4071 0 0 LINEAR 9,10 linear_0010 LINEAR 9 10 32 -1 NaN ... 477894538 2105 255 0 -1 -1 12 Synced FUV 161.524748
0 2076 0 0 LINEAR 7,8 linear_0009 LINEAR 7 8 32 -1 NaN ... 476354099 42789 3 101 30 -1 12 Synced MUV 2107.544962
0 48346 4 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 480401647 23033 3 315 14 911:913 12 Synced MUV 163177.213790
0 9898 1 1 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479716662 7010 3 315 14 911 12 Synced FUV 13145.500198
0 2408 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 479180836 55215 3 315 14 911 12 Synced MUV 8378.715774
0 2109 1 1 LINEAR 7,8 linear_0009 LINEAR 7 8 32 -1 NaN ... 476783655 5048 3 101 -11 -1 12 Synced MUV 1357.574511
0 2807 0 0 LINEAR 5,6 linear_0009 LINEAR 5 6 32 -1 NaN ... 477794616 64371 3 101 -25 -1 12 Synced FUV 3907.151077
0 2357 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 480690654 45078 3 315 14 915 12 Synced MUV 2513.807341
0 15881 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 479476446 58812 3 315 14 911 12 Synced FUV 33883.674405
0 59435 0 0 LINEAR 5,5 linear_0008 LINEAR 5 5 32 -1 NaN ... 477659010 34805 255 0 -1 -1 12 Synced MUV 14857.743164
0 44351 0 0 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 476281165 55542 3 315 14 -1 12 Synced FUV 51213.313046
0 2659 0 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 479456049 52599 3 315 14 911 12 Synced MUV 3117.794345
0 5589 4 0 LINEAR 5,6 linear_0011 LINEAR 5 6 32 -1 NaN ... 480392965 10934 255 0 -1 911:913 12 Synced FUV 4087.895000
0 19374 1 1 LINEAR 15,16 linear_0009 LINEAR 15 16 32 -1 NaN ... 478340352 10934 3 315 14 -1 12 Synced FUV 31529.082639
0 19172 0 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 480222854 14858 3 315 14 911:913 12 Synced FUV 49619.280886
0 3934 0 0 LINEAR 5,6 linear_0009 LINEAR 5 6 32 -1 NaN ... 477924105 21071 3 101 23 -1 12 Synced FUV 6988.576531
0 3505 0 0 LINEAR 5,6 linear_0009 LINEAR 5 6 32 -1 NaN ... 478606052 51945 3 101 -30 -1 12 Synced FUV 5176.238450
0 2681 3 0 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 480235257 57504 3 315 14 911:913 12 Synced MUV 2887.264385
0 2222 0 0 LINEAR 0,19 linear_0009 LINEAR 0 19 32 -1 NaN ... 477797758 29900 255 0 -1 -1 12 Synced FUV 92.616130
0 52 0 0 LINEAR 1,2 linear_0006 LINEAR 1 2 32 -1 NaN ... 478870848 47694 255 0 -1 -1 12 Synced FUV 225.762500
0 10901 1 1 LINEAR 17,18 linear_0011 LINEAR 17 18 32 -1 NaN ... 479588427 38402 3 315 14 911 12 Synced MUV 103847.657341
0 13621 4 0 LINEAR 15,16 linear_0011 LINEAR 15 16 32 -1 NaN ... 480449123 15512 3 315 14 915 12 Synced FUV 20075.114881

16102 rows × 63 columns


In [ ]:


In [8]:
from iuvs import multitools

In [9]:
multitools.progress_display(results, fnames, sleep=20)


2.3 % done.
2.9 % done.
3.6 % done.
4.3 % done.
4.9 % done.
5.7 % done.
6.4 % done.
7.1 % done.
7.8 % done.
8.5 % done.
9.1 % done.
9.8 % done.
10.5 % done.
11.1 % done.
11.8 % done.
12.4 % done.
13.0 % done.
13.6 % done.
14.3 % done.
15.0 % done.
15.6 % done.
16.3 % done.
17.0 % done.
17.7 % done.
18.2 % done.
18.9 % done.
19.5 % done.
20.1 % done.
20.7 % done.
21.4 % done.
22.1 % done.
22.8 % done.
23.4 % done.
24.1 % done.
24.6 % done.
25.3 % done.
26.0 % done.
26.6 % done.
27.3 % done.
27.9 % done.
28.6 % done.
29.3 % done.
29.9 % done.
30.6 % done.
31.3 % done.
32.0 % done.
32.6 % done.
33.2 % done.
33.9 % done.
34.5 % done.
35.1 % done.
35.9 % done.
36.5 % done.
37.2 % done.
37.8 % done.
38.4 % done.
39.1 % done.
39.7 % done.
40.4 % done.
41.1 % done.
41.8 % done.
42.4 % done.
43.1 % done.
43.7 % done.
44.4 % done.
45.1 % done.
45.8 % done.
46.4 % done.
47.0 % done.
47.6 % done.
48.2 % done.
48.9 % done.
49.5 % done.
50.2 % done.
50.7 % done.
51.4 % done.
52.1 % done.
52.7 % done.
53.2 % done.
53.8 % done.
54.4 % done.
55.0 % done.
55.7 % done.
56.3 % done.
56.9 % done.
57.6 % done.
58.2 % done.
58.8 % done.
59.5 % done.
60.1 % done.
60.9 % done.
61.4 % done.
62.1 % done.
62.8 % done.
63.4 % done.
64.0 % done.
64.6 % done.
65.3 % done.
65.9 % done.
66.6 % done.
67.2 % done.
67.9 % done.
68.5 % done.
69.1 % done.
69.7 % done.
70.3 % done.
70.8 % done.
71.4 % done.
72.1 % done.
72.7 % done.
73.4 % done.
73.9 % done.
74.5 % done.
75.2 % done.
75.8 % done.
76.5 % done.
76.9 % done.
77.5 % done.
78.1 % done.
78.7 % done.
79.3 % done.
79.9 % done.
80.5 % done.
81.1 % done.
81.8 % done.
82.4 % done.
83.0 % done.
83.5 % done.
84.2 % done.
84.7 % done.
85.4 % done.
86.0 % done.
86.6 % done.
87.2 % done.
87.8 % done.
88.4 % done.
89.0 % done.
89.6 % done.
90.2 % done.
90.8 % done.
91.3 % done.
91.9 % done.
92.5 % done.
93.0 % done.
93.7 % done.
94.3 % done.
94.9 % done.
95.5 % done.
96.0 % done.
96.6 % done.
97.2 % done.
97.9 % done.
98.5 % done.
99.1 % done.
99.8 % done.

In [10]:
import glob
h5fnames = glob.glob("/home/klay6683/output/l1a_dark_scans/*.h5")

In [11]:
len(h5fnames)


Out[11]:
40421

In [12]:
def chunker(seq, size):
    return (seq[pos:pos + size] for pos in range(0, len(seq), size))

In [13]:
dfs = []
for i,chunk in enumerate(chunker(h5fnames, 200)):
    print("Chunk {}".format(i))
    frames = []
    for fname in chunk:
        frames.append(pd.read_hdf(fname, 'df'))
    dfs.append(pd.concat(frames, ignore_index=True))


Chunk 0
Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8
Chunk 9
Chunk 10
Chunk 11
Chunk 12
Chunk 13
Chunk 14
Chunk 15
Chunk 16
Chunk 17
Chunk 18
Chunk 19
Chunk 20
Chunk 21
Chunk 22
Chunk 23
Chunk 24
Chunk 25
Chunk 26
Chunk 27
Chunk 28
Chunk 29
Chunk 30
Chunk 31
Chunk 32
Chunk 33
Chunk 34
Chunk 35
Chunk 36
Chunk 37
Chunk 38
Chunk 39
Chunk 40
Chunk 41
Chunk 42
Chunk 43
Chunk 44
Chunk 45
Chunk 46
Chunk 47
Chunk 48
Chunk 49
Chunk 50
Chunk 51
Chunk 52
Chunk 53
Chunk 54
Chunk 55
Chunk 56
Chunk 57
Chunk 58
Chunk 59
Chunk 60
Chunk 61
Chunk 62
Chunk 63
Chunk 64
Chunk 65
Chunk 66
Chunk 67
Chunk 68
Chunk 69
Chunk 70
Chunk 71
Chunk 72
Chunk 73
Chunk 74
Chunk 75
Chunk 76
Chunk 77
Chunk 78
Chunk 79
Chunk 80
Chunk 81
Chunk 82
Chunk 83
Chunk 84
Chunk 85
Chunk 86
Chunk 87
Chunk 88
Chunk 89
Chunk 90
Chunk 91
Chunk 92
Chunk 93
Chunk 94
Chunk 95
Chunk 96
Chunk 97
Chunk 98
Chunk 99
Chunk 100
Chunk 101
Chunk 102
Chunk 103
Chunk 104
Chunk 105
Chunk 106
Chunk 107
Chunk 108
Chunk 109
Chunk 110
Chunk 111
Chunk 112
Chunk 113
Chunk 114
Chunk 115
Chunk 116
Chunk 117
Chunk 118
Chunk 119
Chunk 120
Chunk 121
Chunk 122
Chunk 123
Chunk 124
Chunk 125
Chunk 126
Chunk 127
Chunk 128
Chunk 129
Chunk 130
Chunk 131
Chunk 132
Chunk 133
Chunk 134
Chunk 135
Chunk 136
Chunk 137
Chunk 138
Chunk 139
Chunk 140
Chunk 141
Chunk 142
Chunk 143
Chunk 144
Chunk 145
Chunk 146
Chunk 147
Chunk 148
Chunk 149
Chunk 150
Chunk 151
Chunk 152
Chunk 153
Chunk 154
Chunk 155
Chunk 156
Chunk 157
Chunk 158
Chunk 159
Chunk 160
Chunk 161
Chunk 162
Chunk 163
Chunk 164
Chunk 165
Chunk 166
Chunk 167
Chunk 168
Chunk 169
Chunk 170
Chunk 171
Chunk 172
Chunk 173
Chunk 174
Chunk 175
Chunk 176
Chunk 177
Chunk 178
Chunk 179
Chunk 180
Chunk 181
Chunk 182
Chunk 183
Chunk 184
Chunk 185
Chunk 186
Chunk 187
Chunk 188
Chunk 189
Chunk 190
Chunk 191
Chunk 192
Chunk 193
Chunk 194
Chunk 195
Chunk 196
Chunk 197
Chunk 198
Chunk 199
Chunk 200
Chunk 201
Chunk 202

In [14]:
superdf = pd.concat(dfs, ignore_index=True)

In [15]:
superdf.info()


<class 'pandas.core.frame.DataFrame'>
Int64Index: 40421 entries, 0 to 40420
Data columns (total 63 columns):
AVERAGE               40421 non-null float64
BIN_SHIFT             40421 non-null int64
BIN_SHIFT_DIR         40421 non-null int64
BIN_TBL               40421 non-null object
BIN_TYPE              40421 non-null object
BIN_X_ROW             40421 non-null int64
BIN_Y_ROW             40421 non-null int64
BITPIX                40421 non-null int64
BLANK                 40421 non-null int64
BSCALE                494 non-null float64
BZERO                 494 non-null float64
CADENCE               40421 non-null float64
CAPTURE               40421 non-null object
CASE_TEMP             39927 non-null float64
CHECKSUM              40421 non-null float64
DATA_COMPRESSION      40421 non-null int64
DET_TEMP              39927 non-null float64
EXTEND                40421 non-null bool
FILENAME              40421 non-null object
FUV_BAD_PIXEL_MASK    40421 non-null int64
IMAGE_NUMBER          40421 non-null float64
INT_TIME              40421 non-null float64
LENGTH                40421 non-null float64
MCP_GAIN              40421 non-null float64
MCP_VOLT              40421 non-null float64
MIRROR_POS            40421 non-null float64
MIR_DEG               40421 non-null float64
MODE                  40421 non-null object
MUV_BAD_PIXEL_MASK    40421 non-null int64
NAXIS                 40421 non-null int64
NAXIS1                40421 non-null int64
NAXIS2                40421 non-null int64
NAXIS3                19545 non-null float64
NUMBER                40421 non-null float64
N_FILL                40421 non-null int64
OBS_ID                40421 non-null float64
ON_CHIP_WINDOWING     40421 non-null int64
PROCESS               40421 non-null object
SCAN_MODE             40421 non-null object
SCI_ERR_FLAGS         40421 non-null int64
SCI_PKT_CKSUM         40421 non-null int64
SCI_SEG_LENGTH        40421 non-null float64
SCI_SEG_NUM           40421 non-null float64
SCI_SEG_TOTAL         40421 non-null float64
SET_TOTAL             40421 non-null float64
SHUTTER_NUM           40421 non-null int64
SHUTTER_OFF           40421 non-null float64
SHUTTER_ON            40421 non-null float64
SIMPLE                40421 non-null bool
SPA_OFS               40421 non-null int64
SPA_SIZE              40421 non-null int64
SPE_OFS               40421 non-null int64
SPE_SIZE              40421 non-null int64
START_TIME            40421 non-null float64
START_TIME__SUB       40421 non-null float64
STEP_INT              40421 non-null int64
STEP_NUM              40421 non-null float64
STEP_SIZE             40421 non-null int64
SW_VER                40421 non-null object
TEST_PATTERN          40421 non-null int64
TIME_FLAG             40421 non-null object
XUV                   40421 non-null object
primary_mean          40154 non-null float64
dtypes: bool(2), float64(27), int64(24), object(10)
memory usage: 19.2+ MB

In [18]:
from iuvs import calib

In [19]:
superdf.DET_TEMP = superdf.DET_TEMP.map(calib.convert_det_temp_to_C)
superdf.CASE_TEMP = superdf.CASE_TEMP.map(calib.convert_case_temp_to_C)

In [20]:
superdf.to_hdf('/home/klay6683/output/l1a_summary.h5','df')

In [21]:
meta.produce_summary_txt(superdf, 'l1a_summary.txt')

In [ ]: