In [7]:
import numpy as np
import pandas as pd
import pylab as pl
import matplotlib.pyplot as plt
%matplotlib inline
df = pd.read_csv('tmp/session_e.csv')
In [2]:
df.dtypes
Out[2]:
In [8]:
import datetime, time
date_time = []
for x in df['Start Time']:
date_time.append(int(time.mktime(time.strptime(x,"%Y/%m/%d %H:%M"))))
df['Start Time2'] = date_time
In [21]:
pl.figure(figsize=(12, 6))
p = df.groupby('Start Time2')['Start Time2'].count().plot.bar()
p.tick_params(labelbottom='off',top='off',bottom='off')
p.set_yscale('log')
fig = p.get_figure()
fig.savefig('tmp/datime00.png')
In [30]:
print min(df['Start Time2'])
print max(df['Start Time2'])
In [231]:
df['Start Time3'] = df['Start Time2']+100
In [236]:
c0 = df.groupby('Start Time2')['Start Time2'].count()
c1 = df.groupby('Start Time3')['Start Time3'].count()
tmp = pd.concat([c0,c1],axis=1)
ax= tmp.plot.bar(figsize=(12,6),alpha=0.5,width=2,edgecolor="none")
ax.tick_params(labelbottom='off',top='off',bottom='off')
ax.set_yscale('log')
fig = ax.get_figure()
fig.savefig('tmp/datime01.png')
In [16]:
df['Start Time4'] = df['Start Time2']+np.floor(10*np.random.rand(len(df['Start Time2'])))
c0 = df.groupby('Start Time2')['Start Time2'].count()
c1 = df.groupby('Start Time4')['Start Time4'].count()
tmp = pd.concat([c0,c1],axis=1)
ax= tmp.plot.bar(figsize=(12,6),alpha=0.5,width=2,edgecolor="none")
ax.tick_params(labelbottom='off',top='off',bottom='off')
ax.set_yscale('log')
fig = ax.get_figure()
fig.savefig('tmp/datime02.png')
In [18]:
df['Start Time4'] = df['Start Time2']+np.floor(10*np.random.rand(len(df['Start Time2']))-5)
c0 = df.groupby('Start Time2')['Start Time2'].count()
c1 = df.groupby('Start Time4')['Start Time4'].count()
tmp = pd.concat([c0,c1],axis=1)
ax= tmp.plot.bar(figsize=(12,6),alpha=0.5,width=2,edgecolor="none")
ax.tick_params(labelbottom='off',top='off',bottom='off')
ax.set_yscale('log')
fig = ax.get_figure()
fig.savefig('tmp/datime03.png')
In [19]:
df['Start Time4'] = df['Start Time2']+np.floor(4*np.random.rand(len(df['Start Time2']))-2)
c0 = df.groupby('Start Time2')['Start Time2'].count()
c1 = df.groupby('Start Time4')['Start Time4'].count()
tmp = pd.concat([c0,c1],axis=1)
ax= tmp.plot.bar(figsize=(12,6),alpha=0.5,width=2,edgecolor="none")
ax.tick_params(labelbottom='off',top='off',bottom='off')
ax.set_yscale('log')
fig = ax.get_figure()
fig.savefig('tmp/datime04.png')
In [ ]: