In [1]:
import numpy as np
import os
import cv2
import matplotlib.cm as cm 
import matplotlib.pyplot as plt
%matplotlib inline
os.chdir("/home/mckc/Image Processing/yalefaces")
face_cascade = cv2.CascadeClassifier('/home/mckc/Downloads/opencv-2.4.13/data/haarcascades_GPU/haarcascade_frontalface_default.xml')

In [2]:
def load_data(train):
    from PIL import Image
    print('The input of the train in' ,train.shape)
    X_tr = np.zeros((1,243,320),dtype=np.uint8)
    Y_tr = []
    X_tst = np.zeros((1,243,320),dtype=np.uint8)
    Y_tst = []
    for i in train.values[0:,0]:
        if ('happy' in i) or ('sad' in i) :
            #print(np.array(Image.open(i)).shape,X_tst.shape)
            X_tst = np.vstack((X_tst,np.array(Image.open(i)).reshape(1,243,320)))
            Y_tst = np.append(Y_tst,i[7:8])
        else:
            #print(np.array(Image.open(i)).shape,X_tr.shape)
            X_tr = np.vstack((X_tr,np.array(Image.open(i)).reshape(1,243,320))) 
            Y_tr = np.append(Y_tr,i[7:8])
    print('The input of the train in', X_tr.shape, 'and target is %d' ,Y_tr.shape)
    print('The input of the test in ',X_tst.shape, ' and target is', Y_tst.shape)
    
    #X_tr = np.transpose(X_tr,axes=(2,0,1))
    #X_tst = np.transpose(X_tst,axes=(2,0,1))
    X_tr = X_tr[1:,:,:]
    X_tst = X_tst[1:,:,:]
    print('The input of the train in', X_tr.shape, 'and target is %d' ,Y_tr.shape)
    print('The input of the test in ',X_tst.shape ,' and target is' ,Y_tst.shape)
    return X_tr,X_tst,Y_tr,Y_tst

In [3]:
def simulate(X,Y):
    import scipy as sp
    from scipy import misc
    complete = np.zeros((1,243,320),dtype=np.uint8)
    Y_complete = []
    for i in range(len(X)):
        complete = np.vstack((complete,X[i,:,:].reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(X[i,:,:], angle = 5).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(X[i,:,:], angle = 10).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(X[i,:,:], angle = 15).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(X[i,:,:], angle = -5).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(X[i,:,:], angle = -15).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(X[i,:,:], angle = -10).reshape(1,243,320)))
        rotated = np.fliplr(X[i,:,:])
        complete = np.vstack((complete,sp.misc.imrotate(rotated, angle = 5).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(rotated, angle = 10).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(rotated, angle = 15).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(rotated, angle = -5).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(rotated, angle = -15).reshape(1,243,320)))
        complete = np.vstack((complete,sp.misc.imrotate(rotated, angle = -10).reshape(1,243,320)))
        complete = np.vstack((complete,rotated.reshape(1,243,320)))
        Y_complete = np.append(Y_complete,([Y[i]]*14))
    complete = complete[1:,:,:]
    return complete,Y_complete

In [4]:
def extract_faces(X_tr,Y_tr):
    from skimage.transform import resize
    import time
    start_time = time.clock()
    all_faces = np.zeros((1,96,96),dtype=np.uint8)
    missing = []
    multiple = []
    Y= []
    for i in range(len(X_tr)):
        faces  = face_cascade.detectMultiScale(X_tr[i,:,:],scaleFactor=1.1,minNeighbors=5,minSize=(30, 30))
        n_faces = len(faces)
        if n_faces is 1:
            for (x,y,w,h) in faces:
                fac = np.array(X_tr[i,:,:])[y:(y+h),x:(x+h)]
                out = (resize(fac,(96,96))).reshape((1,96,96))
                all_faces = np.vstack((all_faces,out))
                Y = np.append(Y,Y_tr[i])
        else:
            if n_faces > 1:
                print ('There are multiple faces for index %d and with length %d' % (i , n_faces))
                missing = np.append(missing,i)
                #all_faces = np.vstack((all_faces,np.zeros((1,96,96),dtype=np.uint8)))
            else:
                print ('The face is missing for index %d' %i)
                multiple = np.append(multiple,i)

    all_faces = all_faces[1:,:,:]
    print all_faces.shape
    print time.clock() - start_time, "seconds"
    return all_faces,missing,multiple,Y

In [9]:
import pandas as pd
train = pd.read_csv('/home/mckc/Image Processing/yalefaces/train.csv')
X_tr,X_tst,Y_tr,Y_tst = load_data(train)


('The input of the train in', (166, 2))
('The input of the train in', (137, 243, 320), 'and target is %d', (136,))
('The input of the test in ', (31, 243, 320), ' and target is', (30,))
('The input of the train in', (136, 243, 320), 'and target is %d', (136,))
('The input of the test in ', (30, 243, 320), ' and target is', (30,))

In [10]:
import time
start_time = time.clock()
X_train,Y_train = simulate(X_tr,Y_tr)
print X_train.shape,Y_train.shape
print time.clock() - start_time, "seconds"


(1904, 243, 320) (1904,)
23.039562 seconds

In [11]:
X,missing,multiple,Y = extract_faces(X_train[:,:,:],Y_train)
X_test,missing_test,multiple_test,Y_test = extract_faces(X_tst,Y_tst)


The face is missing for index 177
The face is missing for index 339
The face is missing for index 341
The face is missing for index 345
The face is missing for index 347
The face is missing for index 397
The face is missing for index 401
The face is missing for index 423
The face is missing for index 425
The face is missing for index 429
The face is missing for index 431
The face is missing for index 471
The face is missing for index 557
The face is missing for index 591
The face is missing for index 593
The face is missing for index 597
The face is missing for index 717
The face is missing for index 725
There are multiple faces for index 734 and with length 2
There are multiple faces for index 748 and with length 2
The face is missing for index 809
The face is missing for index 927
The face is missing for index 935
There are multiple faces for index 974 and with length 2
The face is missing for index 1285
The face is missing for index 1299
The face is missing for index 1319
The face is missing for index 1327
The face is missing for index 1333
The face is missing for index 1341
The face is missing for index 1346
The face is missing for index 1347
The face is missing for index 1355
The face is missing for index 1361
The face is missing for index 1369
The face is missing for index 1375
The face is missing for index 1383
The face is missing for index 1389
The face is missing for index 1397
There are multiple faces for index 1433 and with length 2
There are multiple faces for index 1434 and with length 2
There are multiple faces for index 1436 and with length 2
The face is missing for index 1501
The face is missing for index 1529
The face is missing for index 1531
The face is missing for index 1535
The face is missing for index 1537
The face is missing for index 1599
The face is missing for index 1600
The face is missing for index 1601
The face is missing for index 1602
The face is missing for index 1604
The face is missing for index 1605
The face is missing for index 1727
The face is missing for index 1728
The face is missing for index 1731
The face is missing for index 1817
The face is missing for index 1851
(1846, 96, 96)
337.989999 seconds
(30, 96, 96)
4.77485 seconds

In [23]:
#Normalising
X = X -0.5
X_test = X_test - 0.5

print X.mean(),X_test.mean()


-0.0975078792702 -0.0834656999999

In [12]:
X_tr.dtype


Out[12]:
dtype('uint8')

In [8]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score

scores = list()
scores_std = list()
n_trees = [10, 25, 50, 100, 250]

for n_tree in n_trees:
        print(n_tree)
        recognizer = RandomForestClassifier(n_tree,verbose=0,oob_score=True,n_jobs=5)
        score = cross_val_score(recognizer, (X.reshape(-1,9216).astype(np.uint8)), Y)
        scores.append(np.mean(score))
        scores_std.append(np.std(score))


10
C:\Users\Omar Saleem Mohammed\AppData\Local\Continuum\Anaconda2\lib\site-packages\sklearn\ensemble\forest.py:403: UserWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable oob estimates.
  warn("Some inputs do not have OOB scores. "
25
50
100
250

In [9]:
sc_array = np.array(scores)
    std_array = np.array(scores_std)
    print('Score: ', sc_array)
    print('Std  : ', std_array)

    plt.figure(figsize=(4,3))
    plt.plot(n_trees, scores)
    plt.plot(n_trees, sc_array + std_array, 'b--')
    plt.plot(n_trees, sc_array - std_array, 'b--')
    plt.ylabel('CV score')
    plt.xlabel('# of trees')
    plt.savefig('cv_trees.png')
    #plt.show()


('Score: ', array([ 0.48219103,  0.44655124,  0.47298583,  0.45519434,  0.45140036]))
('Std  : ', array([ 0.01421329,  0.03113971,  0.04221252,  0.03717804,  0.03799646]))

In [50]:
import lasagne
from lasagne import layers
from lasagne.updates import nesterov_momentum,adam,sgd,adadelta
from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize

net1 = NeuralNet(
        layers=[('input', layers.InputLayer),
                ('hidden', layers.DenseLayer),
                ('output', layers.DenseLayer),
                ],
        # layer parameters:
        input_shape=(None,1,96,96),
        hidden_num_units=200, # number of units in 'hidden' layer
        hidden_nonlinearity = lasagne.nonlinearities.,
        output_nonlinearity=lasagne.nonlinearities.softmax,
        output_num_units=15,  # 15 target values for the 15 subjects

        # optimization method:
        update=adam,
        update_learning_rate=0.1,
        #update_momentum=0.9,
        

        max_epochs=1500,
        verbose=1,
        )

net1.fit((X.reshape(-1,1,96,96).astype(np.uint8)), Y.astype(np.uint8))
#net1.fit((X_train.reshape(-1,1,243,320).astype(np.uint8)), Y_train.astype(np.uint8))


# Neural Network with 1846415 learnable parameters

## Layer information

  #  name    size
---  ------  -------
  0  input   1x96x96
  1  hidden  200
  2  output  15

  epoch    trn loss    val loss    trn/val    valid acc  dur
-------  ----------  ----------  ---------  -----------  -----
      1     9.86761     0.78258   12.60914      0.60916  1.09s
      2     1.60566     1.44890    1.10819      0.60916  1.22s
      3     1.19083     0.90324    1.31839      0.60916  1.11s
      4     0.86612     0.75773    1.14305      0.60916  1.20s
      5     0.77344     0.71898    1.07575      0.60916  1.11s
      6     0.73997     0.70515    1.04938      0.60916  1.15s
      7     0.72709     0.69857    1.04082      0.60916  1.11s
      8     0.72289     0.69453    1.04083      0.60916  1.12s
      9     0.72111     0.69142    1.04294      0.60916  1.23s
     10     0.71927     0.68888    1.04413      0.60916  1.21s
     11     0.71720     0.68681    1.04424      0.60916  1.12s
     12     0.71531     0.68515    1.04401      0.60916  1.30s
     13     0.71380     0.68378    1.04390      0.60916  1.36s
     14     0.71264     0.68263    1.04397      0.60916  1.29s
     15     0.71170     0.68163    1.04411      0.60916  1.14s
     16     0.71088     0.68077    1.04423      0.60916  1.09s
     17     0.71015     0.68001    1.04433      0.60916  1.10s
     18     0.70951     0.67934    1.04441      0.60916  1.08s
     19     0.70894     0.67875    1.04448      0.60916  1.14s
     20     0.70844     0.67823    1.04455      0.60916  1.05s
     21     0.70800     0.67776    1.04462      0.60916  1.06s
     22     0.70760     0.67734    1.04468      0.60916  1.08s
     23     0.70724     0.67695    1.04474      0.60916  1.08s
     24     0.70692     0.67661    1.04480      0.60916  1.06s
     25     0.70663     0.67629    1.04485      0.60916  1.10s
     26     0.70636     0.67600    1.04490      0.60916  1.15s
     27     0.70611     0.67574    1.04495      0.60916  1.08s
     28     0.70589     0.67550    1.04499      0.60916  1.12s
     29     0.70568     0.67527    1.04503      0.60916  1.06s
     30     0.70549     0.67507    1.04507      0.60916  1.08s
     31     0.70532     0.67487    1.04511      0.60916  1.12s
     32     0.70515     0.67469    1.04514      0.60916  1.05s
     33     0.70500     0.67453    1.04518      0.60916  1.08s
     34     0.70486     0.67437    1.04521      0.60916  1.09s
     35     0.70473     0.67423    1.04524      0.60916  1.10s
     36     0.70461     0.67409    1.04527      0.60916  1.08s
     37     0.70449     0.67397    1.04529      0.60916  1.09s
     38     0.70438     0.67385    1.04532      0.60916  1.07s
     39     0.70428     0.67373    1.04534      0.60916  1.10s
     40     0.70419     0.67363    1.04537      0.60916  1.09s
     41     0.70410     0.67353    1.04539      0.60916  1.07s
     42     0.70401     0.67343    1.04541      0.60916  1.07s
     43     0.70393     0.67334    1.04543      0.60916  1.10s
     44     0.70386     0.67326    1.04545      0.60916  1.12s
     45     0.70379     0.67318    1.04547      0.60916  1.12s
     46     0.70372     0.67310    1.04548      0.60916  1.14s
     47     0.70365     0.67303    1.04550      0.60916  1.12s
     48     0.70359     0.67296    1.04552      0.60916  1.08s
     49     0.70354     0.67290    1.04553      0.60916  1.14s
     50     0.70348     0.67283    1.04555      0.60916  1.12s
     51     0.70343     0.67277    1.04556      0.60916  1.07s
     52     0.70338     0.67272    1.04558      0.60916  1.09s
     53     0.70333     0.67266    1.04559      0.60916  1.09s
     54     0.70328     0.67261    1.04560      0.60916  1.11s
     55     0.70324     0.67256    1.04562      0.60916  1.09s
     56     0.70320     0.67251    1.04563      0.60916  1.09s
     57     0.70316     0.67247    1.04564      0.60916  1.09s
     58     0.70312     0.67242    1.04565      0.60916  1.06s
     59     0.70308     0.67238    1.04566      0.60916  1.06s
     60     0.70305     0.67234    1.04567      0.60916  1.09s
     61     0.70301     0.67230    1.04568      0.60916  1.10s
     62     0.70298     0.67227    1.04569      0.60916  1.13s
     63     0.70295     0.67223    1.04570      0.60916  1.22s
     64     0.70292     0.67220    1.04571      0.60916  1.28s
     65     0.70289     0.67216    1.04572      0.60916  1.55s
     66     0.70286     0.67213    1.04573      0.60916  1.28s
     67     0.70284     0.67210    1.04574      0.60916  1.17s
     68     0.70281     0.67207    1.04574      0.60916  1.19s
     69     0.70279     0.67204    1.04575      0.60916  1.08s
     70     0.70276     0.67201    1.04576      0.60916  1.08s
     71     0.70274     0.67198    1.04577      0.60916  1.11s
     72     0.70272     0.67196    1.04577      0.60916  1.11s
     73     0.70269     0.67193    1.04578      0.60916  1.21s
     74     0.70267     0.67191    1.04579      0.60916  1.07s
     75     0.70265     0.67189    1.04579      0.60916  1.16s
     76     0.70263     0.67186    1.04580      0.60916  1.32s
     77     0.70261     0.67184    1.04581      0.60916  1.15s
     78     0.70260     0.67182    1.04581      0.60916  1.14s
     79     0.70258     0.67180    1.04582      0.60916  1.07s
     80     0.70256     0.67178    1.04582      0.60916  1.06s
     81     0.70254     0.67176    1.04583      0.60916  1.09s
     82     0.70253     0.67174    1.04583      0.60916  1.15s
     83     0.70251     0.67172    1.04584      0.60916  1.33s
     84     0.70250     0.67170    1.04584      0.60916  1.24s
     85     0.70248     0.67169    1.04585      0.60916  1.29s
     86     0.70247     0.67167    1.04585      0.60916  1.20s
     87     0.70245     0.67165    1.04586      0.60916  1.08s
     88     0.70244     0.67164    1.04586      0.60916  1.10s
     89     0.70243     0.67162    1.04587      0.60916  1.07s
     90     0.70241     0.67161    1.04587      0.60916  1.09s
     91     0.70240     0.67159    1.04588      0.60916  1.06s
     92     0.70239     0.67158    1.04588      0.60916  1.07s
     93     0.70238     0.67156    1.04589      0.60916  1.07s
     94     0.70237     0.67155    1.04589      0.60916  1.09s
     95     0.70235     0.67154    1.04589      0.60916  1.26s
     96     0.70234     0.67152    1.04590      0.60916  1.54s
     97     0.70233     0.67151    1.04590      0.60916  1.08s
     98     0.70232     0.67150    1.04590      0.60916  1.09s
     99     0.70231     0.67149    1.04591      0.60916  1.10s
    100     0.70230     0.67147    1.04591      0.60916  1.10s
    101     0.70229     0.67146    1.04591      0.60916  1.15s
    102     0.70228     0.67145    1.04592      0.60916  1.10s
    103     0.70227     0.67144    1.04592      0.60916  1.34s
    104     0.70227     0.67143    1.04592      0.60916  1.32s
    105     0.70226     0.67142    1.04593      0.60916  1.19s
    106     0.70225     0.67141    1.04593      0.60916  1.20s
    107     0.70224     0.67140    1.04593      0.60916  1.15s
    108     0.70223     0.67139    1.04594      0.60916  1.10s
    109     0.70222     0.67138    1.04594      0.60916  1.06s
    110     0.70222     0.67137    1.04594      0.60916  1.07s
    111     0.70221     0.67136    1.04594      0.60916  1.25s
    112     0.70220     0.67135    1.04595      0.60916  1.17s
    113     0.70219     0.67134    1.04595      0.60916  1.08s
    114     0.70219     0.67134    1.04595      0.60916  1.10s
    115     0.70218     0.67133    1.04596      0.60916  1.08s
    116     0.70217     0.67132    1.04596      0.60916  1.06s
    117     0.70217     0.67131    1.04596      0.60916  1.08s
    118     0.70216     0.67130    1.04596      0.60916  1.10s
    119     0.70215     0.67130    1.04596      0.60916  1.16s
    120     0.70215     0.67129    1.04597      0.60916  1.23s
    121     0.70214     0.67128    1.04597      0.60916  1.08s
    122     0.70213     0.67127    1.04597      0.60916  1.10s
    123     0.70213     0.67127    1.04597      0.60916  1.25s
    124     0.70212     0.67126    1.04598      0.60916  1.13s
    125     0.70212     0.67125    1.04598      0.60916  1.57s
    126     0.70211     0.67125    1.04598      0.60916  1.69s
    127     0.70211     0.67124    1.04598      0.60916  2.14s
    128     0.70210     0.67123    1.04598      0.60916  1.55s
    129     0.70210     0.67123    1.04599      0.60916  1.21s
    130     0.70209     0.67122    1.04599      0.60916  1.26s
    131     0.70209     0.67122    1.04599      0.60916  1.07s
    132     0.70208     0.67121    1.04599      0.60916  1.16s
    133     0.70208     0.67120    1.04599      0.60916  1.13s
    134     0.70207     0.67120    1.04599      0.60916  1.16s
    135     0.70207     0.67119    1.04600      0.60916  1.33s
    136     0.70206     0.67119    1.04600      0.60916  1.24s
    137     0.70206     0.67118    1.04600      0.60916  1.25s
    138     0.70205     0.67118    1.04600      0.60916  1.12s
    139     0.70205     0.67117    1.04600      0.60916  1.27s
    140     0.70204     0.67117    1.04600      0.60916  1.20s
    141     0.70204     0.67116    1.04601      0.60916  1.38s
    142     0.70204     0.67116    1.04601      0.60916  1.37s
    143     0.70203     0.67115    1.04601      0.60916  1.13s
    144     0.70203     0.67115    1.04601      0.60916  1.24s
    145     0.70202     0.67114    1.04601      0.60916  1.11s
    146     0.70202     0.67114    1.04601      0.60916  1.20s
    147     0.70202     0.67113    1.04602      0.60916  1.38s
    148     0.70201     0.67113    1.04602      0.60916  1.86s
    149     0.70201     0.67113    1.04602      0.60916  1.19s
    150     0.70201     0.67112    1.04602      0.60916  1.16s
    151     0.70200     0.67112    1.04602      0.60916  1.09s
    152     0.70200     0.67111    1.04602      0.60916  1.15s
    153     0.70199     0.67111    1.04602      0.60916  1.08s
    154     0.70199     0.67110    1.04602      0.60916  1.10s
    155     0.70199     0.67110    1.04603      0.60916  1.10s
    156     0.70198     0.67110    1.04603      0.60916  1.39s
    157     0.70198     0.67109    1.04603      0.60916  1.21s
    158     0.70198     0.67109    1.04603      0.60916  1.25s
    159     0.70198     0.67109    1.04603      0.60916  1.30s
    160     0.70197     0.67108    1.04603      0.60916  1.41s
    161     0.70197     0.67108    1.04603      0.60916  1.22s
    162     0.70197     0.67107    1.04603      0.60916  1.32s
    163     0.70196     0.67107    1.04603      0.60916  1.44s
    164     0.70196     0.67107    1.04604      0.60916  1.27s
    165     0.70196     0.67106    1.04604      0.60916  1.21s
    166     0.70196     0.67106    1.04604      0.60916  1.18s
    167     0.70195     0.67106    1.04604      0.60916  1.26s
    168     0.70195     0.67105    1.04604      0.60916  1.18s
    169     0.70195     0.67105    1.04604      0.60916  1.09s
    170     0.70194     0.67105    1.04604      0.60916  1.07s
    171     0.70194     0.67105    1.04604      0.60916  1.28s
    172     0.70194     0.67104    1.04604      0.60916  1.38s
    173     0.70194     0.67104    1.04604      0.60916  1.09s
    174     0.70193     0.67104    1.04605      0.60916  1.19s
    175     0.70193     0.67103    1.04605      0.60916  1.17s
    176     0.70193     0.67103    1.04605      0.60916  1.59s
    177     0.70193     0.67103    1.04605      0.60916  1.27s
    178     0.70192     0.67103    1.04605      0.60916  1.43s
    179     0.70192     0.67102    1.04605      0.60916  1.34s
    180     0.70192     0.67102    1.04605      0.60916  1.18s
    181     0.70192     0.67102    1.04605      0.60916  1.28s
    182     0.70192     0.67101    1.04605      0.60916  1.45s
    183     0.70191     0.67101    1.04605      0.60916  1.41s
    184     0.70191     0.67101    1.04605      0.60916  1.19s
    185     0.70191     0.67101    1.04605      0.60916  1.18s
    186     0.70191     0.67100    1.04605      0.60916  1.18s
    187     0.70191     0.67100    1.04606      0.60916  1.32s
    188     0.70190     0.67100    1.04606      0.60916  1.23s
    189     0.70190     0.67100    1.04606      0.60916  1.26s
    190     0.70190     0.67099    1.04606      0.60916  1.30s
    191     0.70190     0.67099    1.04606      0.60916  1.28s
    192     0.70190     0.67099    1.04606      0.60916  1.20s
    193     0.70189     0.67099    1.04606      0.60916  1.23s
    194     0.70189     0.67099    1.04606      0.60916  1.16s
    195     0.70189     0.67098    1.04606      0.60916  1.15s
    196     0.70189     0.67098    1.04606      0.60916  1.08s
    197     0.70189     0.67098    1.04606      0.60916  1.14s
    198     0.70188     0.67098    1.04606      0.60916  1.18s
    199     0.70188     0.67098    1.04606      0.60916  1.20s
    200     0.70188     0.67097    1.04606      0.60916  1.17s
    201     0.70188     0.67097    1.04606      0.60916  1.08s
    202     0.70188     0.67097    1.04607      0.60916  1.10s
    203     0.70188     0.67097    1.04607      0.60916  1.07s
    204     0.70187     0.67097    1.04607      0.60916  1.11s
    205     0.70187     0.67096    1.04607      0.60916  1.08s
    206     0.70187     0.67096    1.04607      0.60916  1.09s
    207     0.70187     0.67096    1.04607      0.60916  1.10s
    208     0.70187     0.67096    1.04607      0.60916  1.08s
    209     0.70187     0.67096    1.04607      0.60916  1.10s
    210     0.70186     0.67095    1.04607      0.60916  1.09s
    211     0.70186     0.67095    1.04607      0.60916  1.15s
    212     0.70186     0.67095    1.04607      0.60916  1.42s
    213     0.70186     0.67095    1.04607      0.60916  1.34s
    214     0.70186     0.67095    1.04607      0.60916  1.11s
    215     0.70186     0.67095    1.04607      0.60916  1.11s
    216     0.70186     0.67094    1.04607      0.60916  1.31s
    217     0.70185     0.67094    1.04607      0.60916  1.68s
    218     0.70185     0.67094    1.04607      0.60916  1.68s
    219     0.70185     0.67094    1.04607      0.60916  1.47s
    220     0.70185     0.67094    1.04607      0.60916  1.32s
    221     0.70185     0.67094    1.04608      0.60916  1.40s
    222     0.70185     0.67093    1.04608      0.60916  1.30s
    223     0.70185     0.67093    1.04608      0.60916  1.36s
    224     0.70185     0.67093    1.04608      0.60916  1.45s
    225     0.70184     0.67093    1.04608      0.60916  1.19s
    226     0.70184     0.67093    1.04608      0.60916  1.25s
    227     0.70184     0.67093    1.04608      0.60916  1.47s
    228     0.70184     0.67093    1.04608      0.60916  1.44s
    229     0.70184     0.67092    1.04608      0.60916  1.45s
    230     0.70184     0.67092    1.04608      0.60916  1.54s
    231     0.70184     0.67092    1.04608      0.60916  1.58s
    232     0.70184     0.67092    1.04608      0.60916  1.47s
    233     0.70183     0.67092    1.04608      0.60916  1.35s
    234     0.70183     0.67092    1.04608      0.60916  1.40s
    235     0.70183     0.67092    1.04608      0.60916  1.34s
    236     0.70183     0.67091    1.04608      0.60916  1.27s
    237     0.70183     0.67091    1.04608      0.60916  1.29s
    238     0.70183     0.67091    1.04608      0.60916  1.27s
    239     0.70183     0.67091    1.04608      0.60916  1.21s
    240     0.70183     0.67091    1.04608      0.60916  1.39s
    241     0.70183     0.67091    1.04608      0.60916  1.41s
    242     0.70182     0.67091    1.04608      0.60916  1.27s
    243     0.70182     0.67091    1.04608      0.60916  1.30s
    244     0.70182     0.67090    1.04608      0.60916  1.25s
    245     0.70182     0.67090    1.04608      0.60916  1.31s
    246     0.70182     0.67090    1.04608      0.60916  1.32s
    247     0.70182     0.67090    1.04609      0.60916  1.22s
    248     0.70182     0.67090    1.04609      0.60916  1.24s
    249     0.70182     0.67090    1.04609      0.60916  1.27s
    250     0.70182     0.67090    1.04609      0.60916  1.25s
    251     0.70181     0.67090    1.04609      0.60916  1.52s
    252     0.70181     0.67089    1.04609      0.60916  1.13s
    253     0.70181     0.67089    1.04609      0.60916  1.27s
    254     0.70181     0.67089    1.04609      0.60916  1.12s
    255     0.70181     0.67089    1.04609      0.60916  1.09s
    256     0.70181     0.67089    1.04609      0.60916  1.16s
    257     0.70181     0.67089    1.04609      0.60916  1.11s
    258     0.70181     0.67089    1.04609      0.60916  1.07s
    259     0.70181     0.67089    1.04609      0.60916  1.10s
    260     0.70181     0.67089    1.04609      0.60916  1.14s
    261     0.70181     0.67089    1.04609      0.60916  1.12s
    262     0.70180     0.67088    1.04609      0.60916  1.35s
    263     0.70180     0.67088    1.04609      0.60916  1.21s
    264     0.70180     0.67088    1.04609      0.60916  1.35s
    265     0.70180     0.67088    1.04609      0.60916  1.40s
    266     0.70180     0.67088    1.04609      0.60916  1.29s
    267     0.70180     0.67088    1.04609      0.60916  1.16s
    268     0.70180     0.67088    1.04609      0.60916  1.12s
    269     0.70180     0.67088    1.04609      0.60916  1.12s
    270     0.70180     0.67088    1.04609      0.60916  1.12s
    271     0.70180     0.67088    1.04609      0.60916  1.10s
    272     0.70180     0.67087    1.04609      0.60916  1.15s
    273     0.70180     0.67087    1.04609      0.60916  1.39s
    274     0.70179     0.67087    1.04609      0.60916  1.38s
    275     0.70179     0.67087    1.04609      0.60916  1.30s
    276     0.70179     0.67087    1.04609      0.60916  1.55s
    277     0.70179     0.67087    1.04609      0.60916  1.41s
    278     0.70179     0.67087    1.04609      0.60916  1.51s
    279     0.70179     0.67087    1.04609      0.60916  1.37s
    280     0.70179     0.67087    1.04609      0.60916  1.31s
    281     0.70179     0.67087    1.04609      0.60916  1.18s
    282     0.70179     0.67087    1.04609      0.60916  1.26s
    283     0.70179     0.67087    1.04609      0.60916  1.37s
    284     0.70179     0.67086    1.04609      0.60916  1.15s
    285     0.70179     0.67086    1.04609      0.60916  1.19s
    286     0.70179     0.67086    1.04610      0.60916  1.26s
    287     0.70179     0.67086    1.04610      0.60916  1.24s
    288     0.70178     0.67086    1.04610      0.60916  1.13s
    289     0.70178     0.67086    1.04610      0.60916  1.07s
    290     0.70178     0.67086    1.04610      0.60916  1.14s
    291     0.70178     0.67086    1.04610      0.60916  1.07s
    292     0.70178     0.67086    1.04610      0.60916  1.10s
    293     0.70178     0.67086    1.04610      0.60916  1.16s
    294     0.70178     0.67086    1.04610      0.60916  1.09s
    295     0.70178     0.67086    1.04610      0.60916  1.23s
    296     0.70178     0.67086    1.04610      0.60916  1.43s
    297     0.70178     0.67085    1.04610      0.60916  1.25s
    298     0.70178     0.67085    1.04610      0.60916  1.33s
    299     0.70178     0.67085    1.04610      0.60916  1.12s
    300     0.70178     0.67085    1.04610      0.60916  1.19s
    301     0.70178     0.67085    1.04610      0.60916  1.17s
    302     0.70178     0.67085    1.04610      0.60916  1.19s
    303     0.70178     0.67085    1.04610      0.60916  1.10s
    304     0.70177     0.67085    1.04610      0.60916  1.11s
    305     0.70177     0.67085    1.04610      0.60916  1.16s
    306     0.70177     0.67085    1.04610      0.60916  1.08s
    307     0.70177     0.67085    1.04610      0.60916  1.09s
    308     0.70177     0.67085    1.04610      0.60916  1.07s
    309     0.70177     0.67085    1.04610      0.60916  1.09s
    310     0.70177     0.67085    1.04610      0.60916  1.08s
    311     0.70177     0.67085    1.04610      0.60916  1.18s
    312     0.70177     0.67084    1.04610      0.60916  1.22s
    313     0.70177     0.67084    1.04610      0.60916  1.22s
    314     0.70177     0.67084    1.04610      0.60916  1.20s
    315     0.70177     0.67084    1.04610      0.60916  1.26s
    316     0.70177     0.67084    1.04610      0.60916  1.21s
    317     0.70177     0.67084    1.04610      0.60916  1.19s
    318     0.70177     0.67084    1.04610      0.60916  1.20s
    319     0.70177     0.67084    1.04610      0.60916  1.22s
    320     0.70177     0.67084    1.04610      0.60916  1.19s
    321     0.70177     0.67084    1.04610      0.60916  1.29s
    322     0.70176     0.67084    1.04610      0.60916  1.22s
    323     0.70176     0.67084    1.04610      0.60916  1.20s
    324     0.70176     0.67084    1.04610      0.60916  1.20s
    325     0.70176     0.67084    1.04610      0.60916  1.23s
    326     0.70176     0.67084    1.04610      0.60916  1.22s
    327     0.70176     0.67084    1.04610      0.60916  1.21s
    328     0.70176     0.67084    1.04610      0.60916  1.20s
    329     0.70176     0.67083    1.04610      0.60916  1.27s
    330     0.70176     0.67083    1.04610      0.60916  1.23s
    331     0.70176     0.67083    1.04610      0.60916  1.41s
    332     0.70176     0.67083    1.04610      0.60916  1.10s
    333     0.70176     0.67083    1.04610      0.60916  1.08s
    334     0.70176     0.67083    1.04610      0.60916  1.05s
    335     0.70176     0.67083    1.04610      0.60916  1.07s
    336     0.70176     0.67083    1.04610      0.60916  1.07s
    337     0.70176     0.67083    1.04610      0.60916  1.07s
    338     0.70176     0.67083    1.04610      0.60916  1.11s
    339     0.70176     0.67083    1.04610      0.60916  1.06s
    340     0.70176     0.67083    1.04610      0.60916  1.08s
    341     0.70176     0.67083    1.04610      0.60916  1.09s
    342     0.70176     0.67083    1.04610      0.60916  1.06s
    343     0.70175     0.67083    1.04610      0.60916  1.07s
    344     0.70175     0.67083    1.04610      0.60916  1.07s
    345     0.70175     0.67083    1.04610      0.60916  1.07s
    346     0.70175     0.67083    1.04610      0.60916  1.05s
    347     0.70175     0.67083    1.04610      0.60916  1.08s
    348     0.70175     0.67083    1.04610      0.60916  1.07s
    349     0.70175     0.67082    1.04610      0.60916  1.07s
    350     0.70175     0.67082    1.04610      0.60916  1.07s
    351     0.70175     0.67082    1.04610      0.60916  1.07s
    352     0.70175     0.67082    1.04610      0.60916  1.09s
    353     0.70175     0.67082    1.04610      0.60916  1.07s
    354     0.70175     0.67082    1.04610      0.60916  1.07s
    355     0.70175     0.67082    1.04610      0.60916  1.07s
    356     0.70175     0.67082    1.04610      0.60916  1.06s
    357     0.70175     0.67082    1.04610      0.60916  1.07s
    358     0.70175     0.67082    1.04610      0.60916  1.06s
    359     0.70175     0.67082    1.04610      0.60916  1.08s
    360     0.70175     0.67082    1.04610      0.60916  1.05s
    361     0.70175     0.67082    1.04610      0.60916  1.17s
    362     0.70175     0.67082    1.04610      0.60916  1.07s
    363     0.70175     0.67082    1.04610      0.60916  1.13s
    364     0.70175     0.67082    1.04610      0.60916  1.12s
    365     0.70175     0.67082    1.04611      0.60916  1.07s
    366     0.70175     0.67082    1.04611      0.60916  1.06s
    367     0.70175     0.67082    1.04611      0.60916  1.07s
    368     0.70175     0.67082    1.04611      0.60916  1.13s
    369     0.70174     0.67082    1.04611      0.60916  1.08s
    370     0.70174     0.67082    1.04611      0.60916  1.07s
    371     0.70174     0.67082    1.04611      0.60916  1.05s
    372     0.70174     0.67082    1.04611      0.60916  1.16s
    373     0.70174     0.67082    1.04611      0.60916  1.16s
    374     0.70174     0.67081    1.04611      0.60916  1.13s
    375     0.70174     0.67081    1.04611      0.60916  1.08s
    376     0.70174     0.67081    1.04611      0.60916  1.15s
    377     0.70174     0.67081    1.04611      0.60916  1.11s
    378     0.70174     0.67081    1.04611      0.60916  1.11s
    379     0.70174     0.67081    1.04611      0.60916  1.08s
    380     0.70174     0.67081    1.04611      0.60916  1.13s
    381     0.70174     0.67081    1.04611      0.60916  1.11s
    382     0.70174     0.67081    1.04611      0.60916  1.10s
    383     0.70174     0.67081    1.04611      0.60916  1.29s
    384     0.70174     0.67081    1.04611      0.60916  1.69s
    385     0.70174     0.67081    1.04611      0.60916  1.41s
    386     0.70174     0.67081    1.04611      0.60916  1.40s
    387     0.70174     0.67081    1.04611      0.60916  1.50s
    388     0.70174     0.67081    1.04611      0.60916  2.08s
    389     0.70174     0.67081    1.04611      0.60916  1.70s
    390     0.70174     0.67081    1.04611      0.60916  1.92s
    391     0.70174     0.67081    1.04611      0.60916  1.96s
    392     0.70174     0.67081    1.04611      0.60916  1.55s
    393     0.70174     0.67081    1.04611      0.60916  1.28s
    394     0.70174     0.67081    1.04611      0.60916  1.77s
    395     0.70174     0.67081    1.04611      0.60916  1.19s
    396     0.70174     0.67081    1.04611      0.60916  1.75s
    397     0.70174     0.67081    1.04611      0.60916  1.62s
    398     0.70174     0.67081    1.04611      0.60916  1.40s
    399     0.70174     0.67081    1.04611      0.60916  1.44s
    400     0.70174     0.67081    1.04611      0.60916  1.31s
    401     0.70173     0.67081    1.04611      0.60916  1.22s
    402     0.70173     0.67081    1.04611      0.60916  1.60s
    403     0.70173     0.67081    1.04611      0.60916  1.30s
    404     0.70173     0.67081    1.04611      0.60916  1.16s
    405     0.70173     0.67080    1.04611      0.60916  1.45s
    406     0.70173     0.67080    1.04611      0.60916  1.58s
    407     0.70173     0.67080    1.04611      0.60916  1.45s
    408     0.70173     0.67080    1.04611      0.60916  1.39s
    409     0.70173     0.67080    1.04611      0.60916  1.30s
    410     0.70173     0.67080    1.04611      0.60916  1.09s
    411     0.70173     0.67080    1.04611      0.60916  1.45s
    412     0.70173     0.67080    1.04611      0.60916  1.38s
    413     0.70173     0.67080    1.04611      0.60916  1.78s
    414     0.70173     0.67080    1.04611      0.60916  1.26s
    415     0.70173     0.67080    1.04611      0.60916  1.61s
    416     0.70173     0.67080    1.04611      0.60916  1.40s
    417     0.70173     0.67080    1.04611      0.60916  1.21s
    418     0.70173     0.67080    1.04611      0.60916  1.10s
    419     0.70173     0.67080    1.04611      0.60916  1.96s
    420     0.70173     0.67080    1.04611      0.60916  1.78s
    421     0.70173     0.67080    1.04611      0.60916  1.14s
    422     0.70173     0.67080    1.04611      0.60916  1.73s
    423     0.70173     0.67080    1.04611      0.60916  1.78s
    424     0.70173     0.67080    1.04611      0.60916  2.13s
    425     0.70173     0.67080    1.04611      0.60916  1.53s
    426     0.70173     0.67080    1.04611      0.60916  1.70s
    427     0.70173     0.67080    1.04611      0.60916  1.33s
    428     0.70173     0.67080    1.04611      0.60916  1.21s
    429     0.70173     0.67080    1.04611      0.60916  1.47s
    430     0.70173     0.67080    1.04611      0.60916  1.45s
    431     0.70173     0.67080    1.04611      0.60916  1.18s
    432     0.70173     0.67080    1.04611      0.60916  1.43s
    433     0.70173     0.67080    1.04611      0.60916  1.45s
    434     0.70173     0.67080    1.04611      0.60916  1.48s
    435     0.70173     0.67080    1.04611      0.60916  1.48s
    436     0.70173     0.67080    1.04611      0.60916  1.32s
    437     0.70173     0.67080    1.04611      0.60916  1.22s
    438     0.70173     0.67080    1.04611      0.60916  1.43s
    439     0.70173     0.67080    1.04611      0.60916  1.83s
    440     0.70173     0.67080    1.04611      0.60916  1.41s
    441     0.70173     0.67080    1.04611      0.60916  1.31s
    442     0.70173     0.67080    1.04611      0.60916  1.06s
    443     0.70172     0.67080    1.04611      0.60916  1.06s
    444     0.70172     0.67079    1.04611      0.60916  1.07s
    445     0.70172     0.67079    1.04611      0.60916  1.43s
    446     0.70172     0.67079    1.04611      0.60916  1.57s
    447     0.70172     0.67079    1.04611      0.60916  1.50s
    448     0.70172     0.67079    1.04611      0.60916  1.59s
    449     0.70172     0.67079    1.04611      0.60916  1.57s
    450     0.70172     0.67079    1.04611      0.60916  1.17s
    451     0.70172     0.67079    1.04611      0.60916  1.39s
    452     0.70172     0.67079    1.04611      0.60916  1.18s
    453     0.70172     0.67079    1.04611      0.60916  1.34s
    454     0.70172     0.67079    1.04611      0.60916  1.31s
    455     0.70172     0.67079    1.04611      0.60916  1.29s
    456     0.70172     0.67079    1.04611      0.60916  1.38s
    457     0.70172     0.67079    1.04611      0.60916  1.39s
    458     0.70172     0.67079    1.04611      0.60916  1.43s
    459     0.70172     0.67079    1.04611      0.60916  1.67s
    460     0.70172     0.67079    1.04611      0.60916  1.84s
    461     0.70172     0.67079    1.04611      0.60916  1.57s
    462     0.70172     0.67079    1.04611      0.60916  1.84s
    463     0.70172     0.67079    1.04611      0.60916  1.40s
    464     0.70172     0.67079    1.04611      0.60916  1.93s
    465     0.70172     0.67079    1.04611      0.60916  1.61s
    466     0.70172     0.67079    1.04611      0.60916  1.75s
    467     0.70172     0.67079    1.04611      0.60916  1.91s
    468     0.70172     0.67079    1.04611      0.60916  1.74s
    469     0.70172     0.67079    1.04611      0.60916  1.86s
    470     0.70172     0.67079    1.04611      0.60916  1.99s
    471     0.70172     0.67079    1.04611      0.60916  1.90s
    472     0.70172     0.67079    1.04611      0.60916  1.91s
    473     0.70172     0.67079    1.04611      0.60916  1.44s
    474     0.70172     0.67079    1.04611      0.60916  1.49s
    475     0.70172     0.67079    1.04611      0.60916  1.41s
    476     0.70172     0.67079    1.04611      0.60916  1.51s
    477     0.70172     0.67079    1.04611      0.60916  1.50s
    478     0.70172     0.67079    1.04611      0.60916  1.50s
    479     0.70172     0.67079    1.04611      0.60916  1.50s
    480     0.70172     0.67079    1.04611      0.60916  1.44s
    481     0.70172     0.67079    1.04611      0.60916  1.50s
    482     0.70172     0.67079    1.04611      0.60916  1.51s
    483     0.70172     0.67079    1.04611      0.60916  1.54s
    484     0.70172     0.67079    1.04611      0.60916  1.53s
    485     0.70172     0.67079    1.04611      0.60916  1.34s
    486     0.70172     0.67079    1.04611      0.60916  1.11s
    487     0.70172     0.67079    1.04611      0.60916  1.11s
    488     0.70172     0.67079    1.04611      0.60916  1.10s
    489     0.70172     0.67079    1.04611      0.60916  1.52s
    490     0.70172     0.67079    1.04611      0.60916  1.24s
    491     0.70172     0.67079    1.04611      0.60916  1.24s
    492     0.70172     0.67079    1.04611      0.60916  1.30s
    493     0.70172     0.67079    1.04611      0.60916  1.26s
    494     0.70172     0.67079    1.04611      0.60916  1.23s
    495     0.70172     0.67079    1.04611      0.60916  1.33s
    496     0.70172     0.67079    1.04611      0.60916  1.14s
    497     0.70172     0.67079    1.04611      0.60916  1.12s
    498     0.70172     0.67079    1.04611      0.60916  1.13s
    499     0.70172     0.67079    1.04611      0.60916  1.17s
    500     0.70172     0.67078    1.04611      0.60916  1.17s
    501     0.70172     0.67078    1.04611      0.60916  1.14s
    502     0.70171     0.67078    1.04611      0.60916  1.16s
    503     0.70171     0.67078    1.04611      0.60916  1.13s
    504     0.70171     0.67078    1.04611      0.60916  1.18s
    505     0.70171     0.67078    1.04611      0.60916  1.25s
    506     0.70171     0.67078    1.04611      0.60916  1.16s
    507     0.70171     0.67078    1.04611      0.60916  1.16s
    508     0.70171     0.67078    1.04611      0.60916  1.06s
    509     0.70171     0.67078    1.04611      0.60916  1.15s
    510     0.70171     0.67078    1.04611      0.60916  1.10s
    511     0.70171     0.67078    1.04611      0.60916  1.15s
    512     0.70171     0.67078    1.04611      0.60916  1.11s
    513     0.70171     0.67078    1.04611      0.60916  1.09s
    514     0.70171     0.67078    1.04611      0.60916  1.09s
    515     0.70171     0.67078    1.04611      0.60916  1.12s
    516     0.70171     0.67078    1.04611      0.60916  1.08s
    517     0.70171     0.67078    1.04611      0.60916  1.08s
    518     0.70171     0.67078    1.04611      0.60916  1.10s
    519     0.70171     0.67078    1.04611      0.60916  1.16s
    520     0.70171     0.67078    1.04611      0.60916  1.18s
    521     0.70171     0.67078    1.04611      0.60916  1.33s
    522     0.70171     0.67078    1.04611      0.60916  1.36s
    523     0.70171     0.67078    1.04611      0.60916  1.09s
    524     0.70171     0.67078    1.04611      0.60916  1.08s
    525     0.70171     0.67078    1.04611      0.60916  1.08s
    526     0.70171     0.67078    1.04611      0.60916  1.06s
    527     0.70171     0.67078    1.04611      0.60916  1.10s
    528     0.70171     0.67078    1.04611      0.60916  1.09s
    529     0.70171     0.67078    1.04611      0.60916  1.07s
    530     0.70171     0.67078    1.04611      0.60916  1.10s
    531     0.70171     0.67078    1.04611      0.60916  1.08s
    532     0.70171     0.67078    1.04611      0.60916  1.07s
    533     0.70171     0.67078    1.04611      0.60916  1.07s
    534     0.70171     0.67078    1.04611      0.60916  1.07s
    535     0.70171     0.67078    1.04611      0.60916  1.07s
    536     0.70171     0.67078    1.04611      0.60916  1.08s
    537     0.70171     0.67078    1.04611      0.60916  1.08s
    538     0.70171     0.67078    1.04611      0.60916  1.08s
    539     0.70171     0.67078    1.04611      0.60916  1.18s
    540     0.70171     0.67078    1.04611      0.60916  1.12s
    541     0.70171     0.67078    1.04611      0.60916  1.07s
    542     0.70171     0.67078    1.04611      0.60916  1.11s
    543     0.70171     0.67078    1.04611      0.60916  1.06s
    544     0.70171     0.67078    1.04611      0.60916  1.05s
    545     0.70171     0.67078    1.04611      0.60916  1.09s
    546     0.70171     0.67078    1.04611      0.60916  1.08s
    547     0.70171     0.67078    1.04611      0.60916  1.06s
    548     0.70171     0.67078    1.04611      0.60916  1.08s
    549     0.70171     0.67078    1.04611      0.60916  1.07s
    550     0.70171     0.67078    1.04611      0.60916  1.06s
    551     0.70171     0.67078    1.04611      0.60916  1.03s
    552     0.70171     0.67078    1.04611      0.60916  1.07s
    553     0.70171     0.67078    1.04611      0.60916  1.07s
    554     0.70171     0.67078    1.04611      0.60916  1.08s
    555     0.70171     0.67078    1.04611      0.60916  1.08s
    556     0.70171     0.67078    1.04611      0.60916  1.07s
    557     0.70171     0.67078    1.04611      0.60916  1.08s
    558     0.70171     0.67078    1.04611      0.60916  1.07s
    559     0.70171     0.67078    1.04611      0.60916  1.13s
    560     0.70171     0.67078    1.04611      0.60916  1.17s
    561     0.70171     0.67078    1.04611      0.60916  1.14s
    562     0.70171     0.67078    1.04611      0.60916  1.07s
    563     0.70171     0.67078    1.04611      0.60916  1.08s
    564     0.70171     0.67078    1.04611      0.60916  1.07s
    565     0.70171     0.67078    1.04611      0.60916  1.10s
    566     0.70171     0.67078    1.04611      0.60916  1.05s
    567     0.70171     0.67078    1.04611      0.60916  1.07s
    568     0.70171     0.67078    1.04611      0.60916  1.08s
    569     0.70171     0.67078    1.04611      0.60916  1.12s
    570     0.70171     0.67078    1.04611      0.60916  1.05s
    571     0.70171     0.67078    1.04611      0.60916  1.09s
    572     0.70171     0.67078    1.04611      0.60916  1.07s
    573     0.70171     0.67078    1.04611      0.60916  1.05s
    574     0.70171     0.67078    1.04611      0.60916  1.07s
    575     0.70171     0.67078    1.04611      0.60916  1.07s
    576     0.70171     0.67078    1.04611      0.60916  1.06s
    577     0.70171     0.67078    1.04611      0.60916  1.06s
    578     0.70171     0.67078    1.04611      0.60916  1.08s
    579     0.70171     0.67078    1.04611      0.60916  1.08s
    580     0.70171     0.67078    1.04611      0.60916  1.08s
    581     0.70171     0.67078    1.04611      0.60916  1.08s
    582     0.70171     0.67078    1.04611      0.60916  1.07s
    583     0.70171     0.67078    1.04611      0.60916  1.08s
    584     0.70171     0.67078    1.04611      0.60916  1.08s
    585     0.70171     0.67078    1.04611      0.60916  1.09s
    586     0.70171     0.67078    1.04611      0.60916  1.08s
    587     0.70171     0.67078    1.04611      0.60916  1.07s
    588     0.70171     0.67078    1.04611      0.60916  1.07s
    589     0.70171     0.67078    1.04611      0.60916  1.09s
    590     0.70171     0.67078    1.04611      0.60916  1.24s
    591     0.70171     0.67078    1.04611      0.60916  1.29s
    592     0.70171     0.67077    1.04611      0.60916  1.16s
    593     0.70171     0.67077    1.04611      0.60916  1.12s
    594     0.70171     0.67077    1.04611      0.60916  1.07s
    595     0.70171     0.67077    1.04611      0.60916  1.08s
    596     0.70171     0.67077    1.04611      0.60916  1.09s
    597     0.70171     0.67077    1.04611      0.60916  1.29s
    598     0.70171     0.67077    1.04611      0.60916  1.30s
    599     0.70170     0.67077    1.04611      0.60916  1.17s
    600     0.70170     0.67077    1.04611      0.60916  1.13s
    601     0.70170     0.67077    1.04611      0.60916  1.06s
    602     0.70170     0.67077    1.04611      0.60916  1.10s
    603     0.70170     0.67077    1.04611      0.60916  1.06s
    604     0.70170     0.67077    1.04611      0.60916  1.13s
    605     0.70170     0.67077    1.04611      0.60916  1.11s
    606     0.70170     0.67077    1.04611      0.60916  1.11s
    607     0.70170     0.67077    1.04611      0.60916  1.09s
    608     0.70170     0.67077    1.04611      0.60916  1.13s
    609     0.70170     0.67077    1.04611      0.60916  1.12s
    610     0.70170     0.67077    1.04611      0.60916  1.12s
    611     0.70170     0.67077    1.04611      0.60916  1.08s
    612     0.70170     0.67077    1.04611      0.60916  1.08s
    613     0.70170     0.67077    1.04611      0.60916  1.12s
    614     0.70170     0.67077    1.04611      0.60916  1.22s
    615     0.70170     0.67077    1.04611      0.60916  1.13s
    616     0.70170     0.67077    1.04611      0.60916  1.08s
    617     0.70170     0.67077    1.04611      0.60916  1.11s
    618     0.70170     0.67077    1.04611      0.60916  1.11s
    619     0.70170     0.67077    1.04611      0.60916  1.08s
    620     0.70170     0.67077    1.04611      0.60916  1.17s
    621     0.70170     0.67077    1.04611      0.60916  1.08s
    622     0.70170     0.67077    1.04611      0.60916  1.11s
    623     0.70170     0.67077    1.04611      0.60916  1.10s
    624     0.70170     0.67077    1.04611      0.60916  1.09s
    625     0.70170     0.67077    1.04611      0.60916  1.10s
    626     0.70170     0.67077    1.04611      0.60916  1.10s
    627     0.70170     0.67077    1.04611      0.60916  1.06s
    628     0.70170     0.67077    1.04611      0.60916  1.08s
    629     0.70170     0.67077    1.04611      0.60916  1.09s
    630     0.70170     0.67077    1.04611      0.60916  1.08s
    631     0.70170     0.67077    1.04611      0.60916  1.07s
    632     0.70170     0.67077    1.04611      0.60916  1.13s
    633     0.70170     0.67077    1.04611      0.60916  1.11s
    634     0.70170     0.67077    1.04611      0.60916  1.07s
    635     0.70170     0.67077    1.04611      0.60916  1.07s
    636     0.70170     0.67077    1.04611      0.60916  1.11s
    637     0.70170     0.67077    1.04611      0.60916  1.14s
    638     0.70170     0.67077    1.04611      0.60916  1.16s
    639     0.70170     0.67077    1.04611      0.60916  1.09s
    640     0.70170     0.67077    1.04611      0.60916  1.08s
    641     0.70170     0.67077    1.04611      0.60916  1.07s
    642     0.70170     0.67077    1.04611      0.60916  1.09s
    643     0.70170     0.67077    1.04611      0.60916  1.08s
    644     0.70170     0.67077    1.04611      0.60916  1.09s
    645     0.70170     0.67077    1.04611      0.60916  1.15s
    646     0.70170     0.67077    1.04611      0.60916  1.16s
    647     0.70170     0.67077    1.04611      0.60916  1.12s
    648     0.70170     0.67077    1.04611      0.60916  1.06s
    649     0.70170     0.67077    1.04611      0.60916  1.10s
    650     0.70170     0.67077    1.04611      0.60916  1.07s
    651     0.70170     0.67077    1.04611      0.60916  1.06s
    652     0.70170     0.67077    1.04611      0.60916  1.06s
    653     0.70170     0.67077    1.04611      0.60916  1.09s
    654     0.70170     0.67077    1.04611      0.60916  1.13s
    655     0.70170     0.67077    1.04611      0.60916  1.13s
    656     0.70170     0.67077    1.04611      0.60916  1.11s
    657     0.70170     0.67077    1.04611      0.60916  1.15s
    658     0.70170     0.67077    1.04611      0.60916  1.10s
    659     0.70170     0.67077    1.04611      0.60916  1.05s
    660     0.70170     0.67077    1.04611      0.60916  1.08s
    661     0.70170     0.67077    1.04611      0.60916  1.07s
    662     0.70170     0.67077    1.04611      0.60916  1.08s
    663     0.70170     0.67077    1.04611      0.60916  1.08s
    664     0.70170     0.67077    1.04611      0.60916  1.08s
    665     0.70170     0.67077    1.04611      0.60916  1.10s
    666     0.70170     0.67077    1.04611      0.60916  1.10s
    667     0.70170     0.67077    1.04611      0.60916  1.06s
    668     0.70170     0.67077    1.04611      0.60916  1.11s
    669     0.70170     0.67077    1.04611      0.60916  1.07s
    670     0.70170     0.67077    1.04611      0.60916  1.12s
    671     0.70170     0.67077    1.04611      0.60916  1.13s
    672     0.70170     0.67077    1.04611      0.60916  1.09s
    673     0.70170     0.67077    1.04611      0.60916  1.09s
    674     0.70170     0.67077    1.04611      0.60916  1.07s
    675     0.70170     0.67077    1.04611      0.60916  1.08s
    676     0.70170     0.67077    1.04611      0.60916  1.11s
    677     0.70170     0.67077    1.04611      0.60916  1.15s
    678     0.70170     0.67077    1.04611      0.60916  1.15s
    679     0.70170     0.67077    1.04611      0.60916  1.15s
    680     0.70170     0.67077    1.04611      0.60916  1.23s
    681     0.70170     0.67077    1.04611      0.60916  1.22s
    682     0.70170     0.67077    1.04611      0.60916  1.22s
    683     0.70170     0.67077    1.04611      0.60916  1.25s
    684     0.70170     0.67077    1.04611      0.60916  1.22s
    685     0.70170     0.67077    1.04611      0.60916  1.24s
    686     0.70170     0.67077    1.04611      0.60916  1.19s
    687     0.70170     0.67077    1.04611      0.60916  1.20s
    688     0.70170     0.67077    1.04611      0.60916  1.16s
    689     0.70170     0.67077    1.04611      0.60916  1.13s
    690     0.70170     0.67077    1.04611      0.60916  1.16s
    691     0.70170     0.67077    1.04611      0.60916  1.10s
    692     0.70170     0.67077    1.04611      0.60916  1.14s
    693     0.70170     0.67077    1.04611      0.60916  1.13s
    694     0.70170     0.67077    1.04611      0.60916  1.12s
    695     0.70170     0.67077    1.04611      0.60916  1.08s
    696     0.70170     0.67077    1.04611      0.60916  1.07s
    697     0.70170     0.67077    1.04611      0.60916  1.09s
    698     0.70170     0.67077    1.04611      0.60916  1.04s
    699     0.70170     0.67077    1.04611      0.60916  1.08s
    700     0.70170     0.67077    1.04611      0.60916  1.04s
    701     0.70170     0.67077    1.04611      0.60916  1.08s
    702     0.70170     0.67077    1.04611      0.60916  1.06s
    703     0.70170     0.67077    1.04611      0.60916  1.10s
    704     0.70170     0.67077    1.04611      0.60916  1.09s
    705     0.70170     0.67077    1.04611      0.60916  1.06s
    706     0.70170     0.67077    1.04611      0.60916  1.08s
    707     0.70170     0.67077    1.04611      0.60916  1.07s
    708     0.70170     0.67077    1.04611      0.60916  1.06s
    709     0.70170     0.67077    1.04611      0.60916  1.07s
    710     0.70170     0.67077    1.04611      0.60916  1.09s
    711     0.70170     0.67077    1.04611      0.60916  1.09s
    712     0.70170     0.67077    1.04611      0.60916  1.06s
    713     0.70170     0.67077    1.04611      0.60916  1.05s
    714     0.70170     0.67077    1.04611      0.60916  1.07s
    715     0.70170     0.67077    1.04611      0.60916  1.08s
    716     0.70170     0.67077    1.04611      0.60916  1.07s
    717     0.70170     0.67077    1.04611      0.60916  1.08s
    718     0.70170     0.67077    1.04611      0.60916  1.09s
    719     0.70170     0.67077    1.04611      0.60916  1.06s
    720     0.70170     0.67077    1.04611      0.60916  1.09s
    721     0.70170     0.67077    1.04611      0.60916  1.08s
    722     0.70170     0.67077    1.04611      0.60916  1.08s
    723     0.70170     0.67077    1.04611      0.60916  1.09s
    724     0.70170     0.67077    1.04611      0.60916  1.08s
    725     0.70170     0.67077    1.04611      0.60916  1.05s
    726     0.70170     0.67077    1.04611      0.60916  1.08s
    727     0.70170     0.67077    1.04611      0.60916  1.07s
    728     0.70170     0.67077    1.04611      0.60916  1.09s
    729     0.70170     0.67077    1.04611      0.60916  1.12s
    730     0.70170     0.67077    1.04611      0.60916  1.27s
    731     0.70170     0.67077    1.04611      0.60916  1.20s
    732     0.70170     0.67077    1.04611      0.60916  1.03s
    733     0.70170     0.67077    1.04611      0.60916  1.04s
    734     0.70170     0.67077    1.04611      0.60916  1.08s
    735     0.70170     0.67077    1.04611      0.60916  1.24s
    736     0.70170     0.67077    1.04611      0.60916  1.06s
    737     0.70170     0.67077    1.04611      0.60916  1.09s
    738     0.70170     0.67077    1.04611      0.60916  1.11s
    739     0.70170     0.67077    1.04611      0.60916  1.13s
    740     0.70170     0.67077    1.04611      0.60916  1.16s
    741     0.70170     0.67077    1.04611      0.60916  1.12s
    742     0.70170     0.67077    1.04611      0.60916  1.09s
    743     0.70170     0.67077    1.04611      0.60916  1.08s
    744     0.70170     0.67077    1.04611      0.60916  1.04s
    745     0.70170     0.67077    1.04611      0.60916  1.08s
    746     0.70170     0.67077    1.04611      0.60916  1.07s
    747     0.70170     0.67077    1.04611      0.60916  1.07s
    748     0.70170     0.67077    1.04611      0.60916  1.07s
    749     0.70170     0.67077    1.04611      0.60916  1.09s
    750     0.70170     0.67077    1.04611      0.60916  1.09s
    751     0.70170     0.67077    1.04611      0.60916  1.07s
    752     0.70170     0.67077    1.04611      0.60916  1.06s
    753     0.70170     0.67077    1.04611      0.60916  1.08s
    754     0.70170     0.67077    1.04611      0.60916  1.08s
    755     0.70170     0.67077    1.04611      0.60916  1.07s
    756     0.70170     0.67077    1.04611      0.60916  1.08s
    757     0.70170     0.67077    1.04611      0.60916  1.09s
    758     0.70170     0.67077    1.04611      0.60916  1.07s
    759     0.70170     0.67077    1.04611      0.60916  1.06s
    760     0.70170     0.67077    1.04611      0.60916  1.10s
    761     0.70170     0.67077    1.04611      0.60916  1.08s
    762     0.70170     0.67077    1.04611      0.60916  1.07s
    763     0.70170     0.67077    1.04611      0.60916  1.05s
    764     0.70170     0.67077    1.04611      0.60916  1.08s
    765     0.70170     0.67077    1.04611      0.60916  1.06s
    766     0.70170     0.67077    1.04611      0.60916  1.09s
    767     0.70170     0.67077    1.04611      0.60916  1.09s
    768     0.70170     0.67077    1.04611      0.60916  1.09s
    769     0.70170     0.67077    1.04611      0.60916  1.08s
    770     0.70170     0.67077    1.04611      0.60916  1.07s
    771     0.70170     0.67077    1.04611      0.60916  1.06s
    772     0.70170     0.67077    1.04611      0.60916  1.05s
    773     0.70170     0.67077    1.04611      0.60916  1.06s
    774     0.70170     0.67077    1.04611      0.60916  1.09s
    775     0.70170     0.67077    1.04611      0.60916  1.07s
    776     0.70170     0.67077    1.04611      0.60916  1.10s
    777     0.70170     0.67077    1.04611      0.60916  1.10s
    778     0.70170     0.67077    1.04611      0.60916  1.68s
    779     0.70170     0.67077    1.04611      0.60916  1.38s
    780     0.70170     0.67077    1.04611      0.60916  1.08s
    781     0.70170     0.67077    1.04611      0.60916  1.09s
    782     0.70170     0.67077    1.04611      0.60916  1.09s
    783     0.70170     0.67077    1.04611      0.60916  1.12s
    784     0.70170     0.67077    1.04611      0.60916  1.12s
    785     0.70170     0.67077    1.04611      0.60916  1.09s
    786     0.70170     0.67077    1.04611      0.60916  1.07s
    787     0.70170     0.67077    1.04611      0.60916  1.08s
    788     0.70170     0.67077    1.04611      0.60916  1.09s
    789     0.70170     0.67077    1.04611      0.60916  1.08s
    790     0.70170     0.67077    1.04611      0.60916  1.08s
    791     0.70170     0.67077    1.04611      0.60916  1.09s
    792     0.70170     0.67077    1.04611      0.60916  1.06s
    793     0.70170     0.67077    1.04611      0.60916  1.09s
    794     0.70170     0.67077    1.04611      0.60916  1.09s
    795     0.70170     0.67077    1.04611      0.60916  1.07s
    796     0.70170     0.67077    1.04611      0.60916  1.08s
    797     0.70170     0.67077    1.04611      0.60916  1.09s
    798     0.70170     0.67077    1.04611      0.60916  1.09s
    799     0.70170     0.67077    1.04611      0.60916  1.04s
    800     0.70170     0.67077    1.04611      0.60916  1.11s
    801     0.70170     0.67077    1.04611      0.60916  1.07s
    802     0.70170     0.67077    1.04611      0.60916  1.07s
    803     0.70170     0.67077    1.04611      0.60916  1.12s
    804     0.70170     0.67077    1.04611      0.60916  1.08s
    805     0.70170     0.67077    1.04611      0.60916  1.06s
    806     0.70170     0.67077    1.04611      0.60916  1.10s
    807     0.70170     0.67077    1.04611      0.60916  1.12s
    808     0.70170     0.67077    1.04611      0.60916  1.09s
    809     0.70170     0.67077    1.04611      0.60916  1.09s
    810     0.70170     0.67077    1.04611      0.60916  1.08s
    811     0.70170     0.67077    1.04611      0.60916  1.08s
    812     0.70170     0.67077    1.04611      0.60916  1.14s
    813     0.70170     0.67077    1.04611      0.60916  1.16s
    814     0.70170     0.67077    1.04611      0.60916  1.08s
    815     0.70170     0.67077    1.04611      0.60916  1.08s
    816     0.70170     0.67077    1.04611      0.60916  1.07s
    817     0.70170     0.67077    1.04611      0.60916  1.07s
    818     0.70170     0.67077    1.04611      0.60916  1.10s
    819     0.70170     0.67077    1.04611      0.60916  1.08s
    820     0.70170     0.67077    1.04611      0.60916  1.09s
    821     0.70170     0.67077    1.04611      0.60916  1.06s
    822     0.70170     0.67077    1.04611      0.60916  1.06s
    823     0.70170     0.67077    1.04611      0.60916  1.12s
    824     0.70170     0.67077    1.04611      0.60916  1.09s
    825     0.70170     0.67077    1.04611      0.60916  1.08s
    826     0.70170     0.67077    1.04611      0.60916  1.08s
    827     0.70170     0.67077    1.04611      0.60916  1.08s
    828     0.70170     0.67077    1.04611      0.60916  1.09s
    829     0.70170     0.67077    1.04611      0.60916  1.10s
    830     0.70170     0.67077    1.04611      0.60916  1.08s
    831     0.70170     0.67077    1.04611      0.60916  1.08s
    832     0.70170     0.67077    1.04611      0.60916  1.09s
    833     0.70170     0.67077    1.04611      0.60916  1.13s
    834     0.70170     0.67077    1.04611      0.60916  1.10s
    835     0.70170     0.67077    1.04611      0.60916  1.13s
    836     0.70170     0.67077    1.04611      0.60916  1.10s
    837     0.70170     0.67077    1.04611      0.60916  1.08s
    838     0.70170     0.67077    1.04611      0.60916  1.12s
    839     0.70170     0.67077    1.04611      0.60916  1.09s
    840     0.70170     0.67077    1.04611      0.60916  1.08s
    841     0.70170     0.67076    1.04611      0.60916  1.07s
    842     0.70170     0.67076    1.04611      0.60916  1.08s
    843     0.70170     0.67076    1.04611      0.60916  1.09s
    844     0.70170     0.67076    1.04611      0.60916  1.07s
    845     0.70170     0.67076    1.04611      0.60916  1.08s
    846     0.70170     0.67076    1.04611      0.60916  1.08s
    847     0.70170     0.67076    1.04611      0.60916  1.08s
    848     0.70170     0.67076    1.04611      0.60916  1.09s
    849     0.70170     0.67076    1.04611      0.60916  1.06s
    850     0.70170     0.67076    1.04611      0.60916  1.05s
    851     0.70170     0.67076    1.04611      0.60916  1.09s
    852     0.70170     0.67076    1.04611      0.60916  1.09s
    853     0.70170     0.67076    1.04611      0.60916  1.08s
    854     0.70170     0.67076    1.04611      0.60916  1.08s
    855     0.70170     0.67076    1.04611      0.60916  1.08s
    856     0.70170     0.67076    1.04611      0.60916  1.12s
    857     0.70170     0.67076    1.04611      0.60916  1.07s
    858     0.70170     0.67076    1.04611      0.60916  1.08s
    859     0.70170     0.67076    1.04611      0.60916  1.08s
    860     0.70170     0.67076    1.04611      0.60916  1.08s
    861     0.70170     0.67076    1.04611      0.60916  1.06s
    862     0.70170     0.67076    1.04611      0.60916  1.08s
    863     0.70170     0.67076    1.04611      0.60916  1.10s
    864     0.70170     0.67076    1.04611      0.60916  1.07s
    865     0.70170     0.67076    1.04611      0.60916  1.05s
    866     0.70170     0.67076    1.04611      0.60916  1.10s
    867     0.70170     0.67076    1.04611      0.60916  1.08s
    868     0.70170     0.67076    1.04611      0.60916  1.08s
    869     0.70170     0.67076    1.04611      0.60916  1.08s
    870     0.70170     0.67076    1.04611      0.60916  1.09s
    871     0.70170     0.67076    1.04611      0.60916  1.11s
    872     0.70170     0.67076    1.04611      0.60916  1.10s
    873     0.70170     0.67076    1.04611      0.60916  1.07s
    874     0.70170     0.67076    1.04611      0.60916  1.10s
    875     0.70170     0.67076    1.04611      0.60916  1.07s
    876     0.70170     0.67076    1.04611      0.60916  1.23s
    877     0.70170     0.67076    1.04611      0.60916  1.18s
    878     0.70170     0.67076    1.04611      0.60916  1.09s
    879     0.70170     0.67076    1.04611      0.60916  1.09s
    880     0.70170     0.67076    1.04611      0.60916  1.10s
    881     0.70170     0.67076    1.04611      0.60916  1.09s
    882     0.70170     0.67076    1.04611      0.60916  1.10s
    883     0.70170     0.67076    1.04611      0.60916  1.13s
    884     0.70170     0.67076    1.04611      0.60916  1.10s
    885     0.70170     0.67076    1.04611      0.60916  1.11s
    886     0.70170     0.67076    1.04611      0.60916  1.07s
    887     0.70170     0.67076    1.04611      0.60916  1.19s
    888     0.70169     0.67076    1.04611      0.60916  1.07s
    889     0.70169     0.67076    1.04611      0.60916  1.10s
    890     0.70169     0.67076    1.04611      0.60916  1.12s
    891     0.70169     0.67076    1.04611      0.60916  1.25s
    892     0.70169     0.67076    1.04611      0.60916  1.25s
    893     0.70169     0.67076    1.04611      0.60916  1.16s
    894     0.70169     0.67076    1.04611      0.60916  1.10s
    895     0.70169     0.67076    1.04611      0.60916  1.10s
    896     0.70169     0.67076    1.04611      0.60916  1.18s
    897     0.70169     0.67076    1.04611      0.60916  1.22s
    898     0.70169     0.67076    1.04611      0.60916  1.07s
    899     0.70169     0.67076    1.04611      0.60916  1.06s
    900     0.70169     0.67076    1.04611      0.60916  1.08s
    901     0.70169     0.67076    1.04611      0.60916  1.08s
    902     0.70169     0.67076    1.04611      0.60916  1.11s
    903     0.70169     0.67076    1.04611      0.60916  1.11s
    904     0.70169     0.67076    1.04611      0.60916  1.11s
    905     0.70169     0.67076    1.04611      0.60916  1.10s
    906     0.70169     0.67076    1.04611      0.60916  1.11s
    907     0.70169     0.67076    1.04611      0.60916  1.12s
    908     0.70169     0.67076    1.04611      0.60916  1.10s
    909     0.70169     0.67076    1.04611      0.60916  1.12s
    910     0.70169     0.67076    1.04611      0.60916  1.13s
    911     0.70169     0.67076    1.04611      0.60916  1.05s
    912     0.70169     0.67076    1.04611      0.60916  1.09s
    913     0.70169     0.67076    1.04611      0.60916  1.11s
    914     0.70169     0.67076    1.04611      0.60916  1.12s
    915     0.70169     0.67076    1.04611      0.60916  1.09s
    916     0.70169     0.67076    1.04611      0.60916  1.11s
    917     0.70169     0.67076    1.04611      0.60916  1.19s
    918     0.70169     0.67076    1.04611      0.60916  1.20s
    919     0.70169     0.67076    1.04611      0.60916  1.10s
    920     0.70169     0.67076    1.04611      0.60916  1.10s
    921     0.70169     0.67076    1.04611      0.60916  1.08s
    922     0.70169     0.67076    1.04611      0.60916  1.15s
    923     0.70169     0.67076    1.04611      0.60916  1.11s
    924     0.70169     0.67076    1.04611      0.60916  1.12s
    925     0.70169     0.67076    1.04611      0.60916  1.09s
    926     0.70169     0.67076    1.04611      0.60916  1.09s
    927     0.70169     0.67076    1.04611      0.60916  1.09s
    928     0.70169     0.67076    1.04611      0.60916  1.07s
    929     0.70169     0.67076    1.04611      0.60916  1.08s
    930     0.70169     0.67076    1.04611      0.60916  1.06s
    931     0.70169     0.67076    1.04611      0.60916  1.07s
    932     0.70169     0.67076    1.04611      0.60916  1.08s
    933     0.70169     0.67076    1.04611      0.60916  1.06s
    934     0.70169     0.67076    1.04611      0.60916  1.11s
    935     0.70169     0.67076    1.04611      0.60916  1.08s
    936     0.70169     0.67076    1.04611      0.60916  1.07s
    937     0.70169     0.67076    1.04611      0.60916  1.09s
    938     0.70169     0.67076    1.04611      0.60916  1.09s
    939     0.70169     0.67076    1.04611      0.60916  1.11s
    940     0.70169     0.67076    1.04611      0.60916  1.10s
    941     0.70169     0.67076    1.04611      0.60916  1.09s
    942     0.70169     0.67076    1.04611      0.60916  1.19s
    943     0.70169     0.67076    1.04611      0.60916  1.22s
    944     0.70169     0.67076    1.04611      0.60916  1.15s
    945     0.70169     0.67076    1.04611      0.60916  1.15s
    946     0.70169     0.67076    1.04611      0.60916  1.16s
    947     0.70169     0.67076    1.04611      0.60916  1.20s
    948     0.70169     0.67076    1.04611      0.60916  1.17s
    949     0.70169     0.67076    1.04611      0.60916  1.17s
    950     0.70169     0.67076    1.04611      0.60916  1.12s
    951     0.70169     0.67076    1.04611      0.60916  1.10s
    952     0.70169     0.67076    1.04611      0.60916  1.08s
    953     0.70169     0.67076    1.04611      0.60916  1.13s
    954     0.70169     0.67076    1.04611      0.60916  1.12s
    955     0.70169     0.67076    1.04611      0.60916  1.13s
    956     0.70169     0.67076    1.04611      0.60916  1.14s
    957     0.70169     0.67076    1.04611      0.60916  1.24s
    958     0.70169     0.67076    1.04611      0.60916  1.19s
    959     0.70169     0.67076    1.04611      0.60916  1.12s
    960     0.70169     0.67076    1.04611      0.60916  1.18s
    961     0.70169     0.67076    1.04611      0.60916  1.11s
    962     0.70169     0.67076    1.04611      0.60916  1.10s
    963     0.70169     0.67076    1.04611      0.60916  1.10s
    964     0.70169     0.67076    1.04611      0.60916  1.07s
    965     0.70169     0.67076    1.04611      0.60916  1.09s
    966     0.70169     0.67076    1.04611      0.60916  1.06s
    967     0.70169     0.67076    1.04611      0.60916  1.09s
    968     0.70169     0.67076    1.04611      0.60916  1.07s
    969     0.70169     0.67076    1.04611      0.60916  1.08s
    970     0.70169     0.67076    1.04611      0.60916  1.07s
    971     0.70169     0.67076    1.04611      0.60916  1.07s
    972     0.70169     0.67076    1.04611      0.60916  1.10s
    973     0.70169     0.67076    1.04611      0.60916  1.08s
    974     0.70169     0.67076    1.04611      0.60916  1.07s
    975     0.70169     0.67076    1.04611      0.60916  1.09s
    976     0.70169     0.67076    1.04611      0.60916  1.09s
    977     0.70169     0.67076    1.04611      0.60916  1.08s
    978     0.70169     0.67076    1.04611      0.60916  1.11s
    979     0.70169     0.67076    1.04611      0.60916  1.09s
    980     0.70169     0.67076    1.04611      0.60916  1.08s
    981     0.70169     0.67076    1.04611      0.60916  1.07s
    982     0.70169     0.67076    1.04611      0.60916  1.37s
    983     0.70169     0.67076    1.04611      0.60916  1.63s
    984     0.70169     0.67076    1.04611      0.60916  1.37s
    985     0.70169     0.67076    1.04611      0.60916  1.15s
    986     0.70169     0.67076    1.04611      0.60916  1.08s
    987     0.70169     0.67076    1.04611      0.60916  1.10s
    988     0.70169     0.67076    1.04611      0.60916  1.09s
    989     0.70169     0.67076    1.04611      0.60916  1.09s
    990     0.70169     0.67076    1.04611      0.60916  1.10s
    991     0.70169     0.67076    1.04611      0.60916  1.11s
    992     0.70169     0.67076    1.04611      0.60916  1.10s
    993     0.70169     0.67076    1.04611      0.60916  1.08s
    994     0.70169     0.67076    1.04611      0.60916  1.22s
    995     0.70169     0.67076    1.04611      0.60916  1.17s
    996     0.70169     0.67076    1.04611      0.60916  1.12s
    997     0.70169     0.67076    1.04611      0.60916  1.12s
    998     0.70169     0.67076    1.04611      0.60916  1.09s
    999     0.70169     0.67076    1.04611      0.60916  1.08s
   1000     0.70169     0.67076    1.04611      0.60916  1.29s
   1001     0.70169     0.67076    1.04611      0.60916  1.22s
   1002     0.70169     0.67076    1.04611      0.60916  1.41s
   1003     0.70169     0.67076    1.04611      0.60916  1.67s
   1004     0.70169     0.67076    1.04611      0.60916  1.44s
   1005     0.70169     0.67076    1.04611      0.60916  1.63s
   1006     0.70169     0.67076    1.04611      0.60916  1.41s
   1007     0.70169     0.67076    1.04611      0.60916  1.52s
   1008     0.70169     0.67076    1.04611      0.60916  1.62s
   1009     0.70169     0.67076    1.04611      0.60916  1.46s
   1010     0.70169     0.67076    1.04611      0.60916  1.48s
   1011     0.70169     0.67076    1.04611      0.60916  1.54s
   1012     0.70169     0.67076    1.04611      0.60916  1.25s
   1013     0.70169     0.67076    1.04611      0.60916  1.20s
   1014     0.70169     0.67076    1.04611      0.60916  1.20s
   1015     0.70169     0.67076    1.04611      0.60916  1.17s
   1016     0.70169     0.67076    1.04611      0.60916  1.14s
   1017     0.70169     0.67076    1.04611      0.60916  1.13s
   1018     0.70169     0.67076    1.04611      0.60916  1.12s
   1019     0.70169     0.67076    1.04611      0.60916  1.12s
   1020     0.70169     0.67076    1.04611      0.60916  1.13s
   1021     0.70169     0.67076    1.04611      0.60916  1.10s
   1022     0.70169     0.67076    1.04611      0.60916  1.12s
   1023     0.70169     0.67076    1.04611      0.60916  1.18s
   1024     0.70169     0.67076    1.04611      0.60916  1.16s
   1025     0.70169     0.67076    1.04611      0.60916  1.14s
   1026     0.70169     0.67076    1.04611      0.60916  1.14s
   1027     0.70169     0.67076    1.04611      0.60916  1.12s
   1028     0.70169     0.67076    1.04611      0.60916  1.21s
   1029     0.70169     0.67076    1.04611      0.60916  1.20s
   1030     0.70169     0.67076    1.04611      0.60916  1.19s
   1031     0.70169     0.67076    1.04611      0.60916  1.47s
   1032     0.70169     0.67076    1.04611      0.60916  1.53s
   1033     0.70169     0.67076    1.04611      0.60916  1.51s
   1034     0.70169     0.67076    1.04611      0.60916  1.67s
   1035     0.70169     0.67076    1.04611      0.60916  1.24s
   1036     0.70169     0.67076    1.04611      0.60916  1.24s
   1037     0.70169     0.67076    1.04611      0.60916  1.44s
   1038     0.70169     0.67076    1.04611      0.60916  1.36s
   1039     0.70169     0.67076    1.04611      0.60916  1.36s
   1040     0.70169     0.67076    1.04611      0.60916  1.35s
   1041     0.70169     0.67076    1.04611      0.60916  1.54s
   1042     0.70169     0.67076    1.04611      0.60916  1.67s
   1043     0.70169     0.67076    1.04611      0.60916  1.48s
   1044     0.70169     0.67076    1.04611      0.60916  1.44s
   1045     0.70169     0.67076    1.04611      0.60916  1.34s
   1046     0.70169     0.67076    1.04611      0.60916  1.26s
   1047     0.70169     0.67076    1.04611      0.60916  1.14s
   1048     0.70169     0.67076    1.04611      0.60916  1.46s
   1049     0.70169     0.67076    1.04611      0.60916  1.20s
   1050     0.70169     0.67076    1.04611      0.60916  1.15s
   1051     0.70169     0.67076    1.04611      0.60916  1.13s
   1052     0.70169     0.67076    1.04611      0.60916  1.12s
   1053     0.70169     0.67076    1.04611      0.60916  1.26s
   1054     0.70169     0.67076    1.04611      0.60916  1.26s
   1055     0.70169     0.67076    1.04611      0.60916  1.18s
   1056     0.70169     0.67076    1.04611      0.60916  1.12s
   1057     0.70169     0.67076    1.04611      0.60916  1.31s
   1058     0.70169     0.67076    1.04611      0.60916  1.34s
   1059     0.70169     0.67076    1.04611      0.60916  1.24s
   1060     0.70169     0.67076    1.04611      0.60916  1.40s
   1061     0.70169     0.67076    1.04611      0.60916  1.13s
   1062     0.70169     0.67076    1.04611      0.60916  1.42s
   1063     0.70169     0.67076    1.04611      0.60916  1.25s
   1064     0.70169     0.67076    1.04611      0.60916  1.13s
   1065     0.70169     0.67076    1.04611      0.60916  1.13s
   1066     0.70169     0.67076    1.04611      0.60916  1.13s
   1067     0.70169     0.67076    1.04611      0.60916  1.14s
   1068     0.70169     0.67076    1.04611      0.60916  1.14s
   1069     0.70169     0.67076    1.04611      0.60916  1.14s
   1070     0.70169     0.67076    1.04611      0.60916  1.14s
   1071     0.70169     0.67076    1.04611      0.60916  1.15s
   1072     0.70169     0.67076    1.04611      0.60916  1.32s
   1073     0.70169     0.67076    1.04611      0.60916  1.21s
   1074     0.70169     0.67076    1.04611      0.60916  1.27s
   1075     0.70169     0.67076    1.04611      0.60916  1.27s
   1076     0.70169     0.67076    1.04611      0.60916  1.36s
   1077     0.70169     0.67076    1.04611      0.60916  1.25s
   1078     0.70169     0.67076    1.04611      0.60916  1.15s
   1079     0.70169     0.67076    1.04611      0.60916  1.27s
   1080     0.70169     0.67076    1.04611      0.60916  1.18s
   1081     0.70169     0.67076    1.04611      0.60916  1.14s
   1082     0.70169     0.67076    1.04611      0.60916  1.31s
   1083     0.70169     0.67076    1.04611      0.60916  1.21s
   1084     0.70169     0.67076    1.04611      0.60916  1.10s
   1085     0.70169     0.67076    1.04611      0.60916  1.21s
   1086     0.70169     0.67076    1.04611      0.60916  1.12s
   1087     0.70169     0.67076    1.04611      0.60916  1.08s
   1088     0.70169     0.67076    1.04611      0.60916  1.15s
   1089     0.70169     0.67076    1.04611      0.60916  1.11s
   1090     0.70169     0.67076    1.04611      0.60916  1.08s
   1091     0.70169     0.67076    1.04611      0.60916  1.15s
   1092     0.70169     0.67076    1.04611      0.60916  1.15s
   1093     0.70169     0.67076    1.04611      0.60916  1.17s
   1094     0.70169     0.67076    1.04611      0.60916  1.13s
   1095     0.70169     0.67076    1.04611      0.60916  1.14s
   1096     0.70169     0.67076    1.04611      0.60916  1.23s
   1097     0.70169     0.67076    1.04611      0.60916  1.15s
   1098     0.70169     0.67076    1.04611      0.60916  1.19s
   1099     0.70169     0.67076    1.04611      0.60916  1.12s
   1100     0.70169     0.67076    1.04611      0.60916  1.19s
   1101     0.70169     0.67076    1.04611      0.60916  1.19s
   1102     0.70169     0.67076    1.04611      0.60916  1.17s
   1103     0.70169     0.67076    1.04611      0.60916  1.16s
   1104     0.70169     0.67076    1.04611      0.60916  1.13s
   1105     0.70169     0.67076    1.04611      0.60916  1.22s
   1106     0.70169     0.67076    1.04611      0.60916  1.17s
   1107     0.70169     0.67076    1.04611      0.60916  1.19s
   1108     0.70169     0.67076    1.04611      0.60916  1.12s
   1109     0.70169     0.67076    1.04611      0.60916  1.19s
   1110     0.70169     0.67076    1.04611      0.60916  1.18s
   1111     0.70169     0.67076    1.04611      0.60916  1.20s
   1112     0.70169     0.67076    1.04611      0.60916  1.17s
   1113     0.70169     0.67076    1.04611      0.60916  1.15s
   1114     0.70169     0.67076    1.04611      0.60916  1.08s
   1115     0.70169     0.67076    1.04611      0.60916  1.14s
   1116     0.70169     0.67076    1.04611      0.60916  1.23s
   1117     0.70169     0.67076    1.04611      0.60916  1.20s
   1118     0.70169     0.67076    1.04611      0.60916  1.21s
   1119     0.70169     0.67076    1.04611      0.60916  1.16s
   1120     0.70169     0.67076    1.04611      0.60916  1.21s
   1121     0.70169     0.67076    1.04611      0.60916  1.17s
   1122     0.70169     0.67076    1.04611      0.60916  1.19s
   1123     0.70169     0.67076    1.04611      0.60916  1.14s
   1124     0.70169     0.67076    1.04611      0.60916  1.25s
   1125     0.70169     0.67076    1.04611      0.60916  1.19s
   1126     0.70169     0.67076    1.04611      0.60916  1.18s
   1127     0.70169     0.67076    1.04611      0.60916  1.22s
   1128     0.70169     0.67076    1.04611      0.60916  1.18s
   1129     0.70169     0.67076    1.04611      0.60916  1.15s
   1130     0.70169     0.67076    1.04611      0.60916  1.17s
   1131     0.70169     0.67076    1.04611      0.60916  1.08s
   1132     0.70169     0.67076    1.04611      0.60916  1.08s
   1133     0.70169     0.67076    1.04611      0.60916  1.12s
   1134     0.70169     0.67076    1.04611      0.60916  1.17s
   1135     0.70169     0.67076    1.04611      0.60916  1.28s
   1136     0.70169     0.67076    1.04611      0.60916  1.20s
   1137     0.70169     0.67076    1.04611      0.60916  1.11s
   1138     0.70169     0.67076    1.04611      0.60916  1.12s
   1139     0.70169     0.67076    1.04611      0.60916  1.16s
   1140     0.70169     0.67076    1.04611      0.60916  1.22s
   1141     0.70169     0.67076    1.04611      0.60916  1.18s
   1142     0.70169     0.67076    1.04611      0.60916  1.22s
   1143     0.70169     0.67076    1.04611      0.60916  1.11s
   1144     0.70169     0.67076    1.04611      0.60916  1.16s
   1145     0.70169     0.67076    1.04611      0.60916  1.14s
   1146     0.70169     0.67076    1.04611      0.60916  1.21s
   1147     0.70169     0.67076    1.04611      0.60916  1.15s
   1148     0.70169     0.67076    1.04611      0.60916  1.22s
   1149     0.70169     0.67076    1.04611      0.60916  1.14s
   1150     0.70169     0.67076    1.04611      0.60916  1.20s
   1151     0.70169     0.67076    1.04611      0.60916  1.17s
   1152     0.70169     0.67076    1.04611      0.60916  1.22s
   1153     0.70169     0.67076    1.04611      0.60916  1.18s
   1154     0.70169     0.67076    1.04611      0.60916  1.13s
   1155     0.70169     0.67076    1.04611      0.60916  1.10s
   1156     0.70169     0.67076    1.04611      0.60916  1.08s
   1157     0.70169     0.67076    1.04611      0.60916  1.08s
   1158     0.70169     0.67076    1.04611      0.60916  1.08s
   1159     0.70169     0.67076    1.04611      0.60916  1.12s
   1160     0.70169     0.67076    1.04611      0.60916  1.10s
   1161     0.70169     0.67076    1.04611      0.60916  1.17s
   1162     0.70169     0.67076    1.04611      0.60916  1.14s
   1163     0.70169     0.67076    1.04611      0.60916  1.25s
   1164     0.70169     0.67076    1.04611      0.60916  1.13s
   1165     0.70169     0.67076    1.04611      0.60916  1.10s
   1166     0.70169     0.67076    1.04611      0.60916  1.07s
   1167     0.70169     0.67076    1.04611      0.60916  1.09s
   1168     0.70169     0.67076    1.04611      0.60916  1.15s
   1169     0.70169     0.67076    1.04611      0.60916  1.19s
   1170     0.70169     0.67076    1.04611      0.60916  1.25s
   1171     0.70169     0.67076    1.04611      0.60916  1.09s
   1172     0.70169     0.67076    1.04611      0.60916  1.13s
   1173     0.70169     0.67076    1.04611      0.60916  1.13s
   1174     0.70169     0.67076    1.04611      0.60916  1.12s
   1175     0.70169     0.67076    1.04611      0.60916  1.13s
   1176     0.70169     0.67076    1.04611      0.60916  1.11s
   1177     0.70169     0.67076    1.04611      0.60916  1.15s
   1178     0.70169     0.67076    1.04611      0.60916  1.13s
   1179     0.70169     0.67076    1.04611      0.60916  1.23s
   1180     0.70169     0.67076    1.04611      0.60916  1.20s
   1181     0.70169     0.67076    1.04611      0.60916  1.13s
   1182     0.70169     0.67076    1.04611      0.60916  1.14s
   1183     0.70169     0.67076    1.04611      0.60916  1.15s
   1184     0.70169     0.67076    1.04611      0.60916  1.25s
   1185     0.70169     0.67076    1.04611      0.60916  1.12s
   1186     0.70169     0.67076    1.04611      0.60916  1.20s
   1187     0.70169     0.67076    1.04611      0.60916  1.19s
   1188     0.70169     0.67076    1.04611      0.60916  1.26s
   1189     0.70169     0.67076    1.04611      0.60916  1.22s
   1190     0.70169     0.67076    1.04611      0.60916  1.21s
   1191     0.70169     0.67076    1.04611      0.60916  1.21s
   1192     0.70169     0.67076    1.04611      0.60916  1.12s
   1193     0.70169     0.67076    1.04611      0.60916  1.13s
   1194     0.70169     0.67076    1.04611      0.60916  1.17s
   1195     0.70169     0.67076    1.04611      0.60916  1.18s
   1196     0.70169     0.67076    1.04611      0.60916  1.14s
   1197     0.70169     0.67076    1.04611      0.60916  1.08s
   1198     0.70169     0.67076    1.04611      0.60916  1.18s
   1199     0.70169     0.67076    1.04611      0.60916  1.15s
   1200     0.70169     0.67076    1.04611      0.60916  1.11s
   1201     0.70169     0.67076    1.04611      0.60916  1.22s
   1202     0.70169     0.67076    1.04611      0.60916  1.15s
   1203     0.70169     0.67076    1.04611      0.60916  1.21s
   1204     0.70169     0.67076    1.04611      0.60916  1.09s
   1205     0.70169     0.67076    1.04611      0.60916  1.18s
   1206     0.70169     0.67076    1.04611      0.60916  1.09s
   1207     0.70169     0.67076    1.04611      0.60916  1.08s
   1208     0.70169     0.67076    1.04611      0.60916  1.10s
   1209     0.70169     0.67076    1.04611      0.60916  1.14s
   1210     0.70169     0.67076    1.04611      0.60916  1.22s
   1211     0.70169     0.67076    1.04611      0.60916  1.26s
   1212     0.70169     0.67076    1.04611      0.60916  1.21s
   1213     0.70169     0.67076    1.04611      0.60916  1.23s
   1214     0.70169     0.67076    1.04611      0.60916  1.22s
   1215     0.70169     0.67076    1.04611      0.60916  1.21s
   1216     0.70169     0.67076    1.04611      0.60916  1.23s
   1217     0.70169     0.67076    1.04611      0.60916  1.17s
   1218     0.70169     0.67076    1.04611      0.60916  1.13s
   1219     0.70169     0.67076    1.04611      0.60916  1.17s
   1220     0.70169     0.67076    1.04611      0.60916  1.13s
   1221     0.70169     0.67076    1.04611      0.60916  1.13s
   1222     0.70169     0.67076    1.04611      0.60916  1.13s
   1223     0.70169     0.67076    1.04611      0.60916  1.15s
   1224     0.70169     0.67076    1.04611      0.60916  1.10s
   1225     0.70169     0.67076    1.04611      0.60916  1.10s
   1226     0.70169     0.67076    1.04611      0.60916  1.11s
   1227     0.70169     0.67076    1.04611      0.60916  1.16s
   1228     0.70169     0.67076    1.04611      0.60916  1.10s
   1229     0.70169     0.67076    1.04611      0.60916  1.11s
   1230     0.70169     0.67076    1.04611      0.60916  1.07s
   1231     0.70169     0.67076    1.04611      0.60916  1.16s
   1232     0.70169     0.67076    1.04611      0.60916  1.10s
   1233     0.70169     0.67076    1.04611      0.60916  1.30s
   1234     0.70169     0.67076    1.04611      0.60916  1.13s
   1235     0.70169     0.67076    1.04611      0.60916  1.09s
   1236     0.70169     0.67076    1.04611      0.60916  1.21s
   1237     0.70169     0.67076    1.04611      0.60916  1.17s
   1238     0.70169     0.67076    1.04611      0.60916  1.12s
   1239     0.70169     0.67076    1.04611      0.60916  1.12s
   1240     0.70169     0.67076    1.04611      0.60916  1.13s
   1241     0.70169     0.67076    1.04611      0.60916  1.32s
   1242     0.70169     0.67076    1.04611      0.60916  1.32s
   1243     0.70169     0.67076    1.04611      0.60916  1.13s
   1244     0.70169     0.67076    1.04611      0.60916  1.07s
   1245     0.70169     0.67076    1.04611      0.60916  1.16s
   1246     0.70169     0.67076    1.04611      0.60916  1.19s
   1247     0.70169     0.67076    1.04611      0.60916  1.18s
   1248     0.70169     0.67076    1.04611      0.60916  1.18s
   1249     0.70169     0.67076    1.04611      0.60916  1.23s
   1250     0.70169     0.67076    1.04611      0.60916  1.15s
   1251     0.70169     0.67076    1.04611      0.60916  1.15s
   1252     0.70169     0.67076    1.04611      0.60916  1.07s
   1253     0.70169     0.67076    1.04611      0.60916  1.06s
   1254     0.70169     0.67076    1.04611      0.60916  1.15s
   1255     0.70169     0.67076    1.04611      0.60916  1.17s
   1256     0.70169     0.67076    1.04611      0.60916  1.18s
   1257     0.70169     0.67076    1.04611      0.60916  1.15s
   1258     0.70169     0.67076    1.04611      0.60916  1.13s
   1259     0.70169     0.67076    1.04611      0.60916  1.08s
   1260     0.70169     0.67076    1.04611      0.60916  1.12s
   1261     0.70169     0.67076    1.04611      0.60916  1.13s
   1262     0.70169     0.67076    1.04611      0.60916  1.08s
   1263     0.70169     0.67076    1.04611      0.60916  1.07s
   1264     0.70169     0.67076    1.04611      0.60916  1.07s
   1265     0.70169     0.67076    1.04611      0.60916  1.10s
   1266     0.70169     0.67076    1.04611      0.60916  1.06s
   1267     0.70169     0.67076    1.04611      0.60916  1.10s
   1268     0.70169     0.67076    1.04611      0.60916  1.07s
   1269     0.70169     0.67076    1.04611      0.60916  1.09s
   1270     0.70169     0.67076    1.04611      0.60916  1.06s
   1271     0.70169     0.67076    1.04611      0.60916  1.07s
   1272     0.70169     0.67076    1.04611      0.60916  1.08s
   1273     0.70169     0.67076    1.04611      0.60916  1.08s
   1274     0.70169     0.67076    1.04611      0.60916  1.12s
   1275     0.70169     0.67076    1.04611      0.60916  1.08s
   1276     0.70169     0.67076    1.04611      0.60916  1.09s
   1277     0.70169     0.67076    1.04611      0.60916  1.15s
   1278     0.70169     0.67076    1.04611      0.60916  1.09s
   1279     0.70169     0.67076    1.04611      0.60916  1.14s
   1280     0.70169     0.67076    1.04611      0.60916  1.10s
   1281     0.70169     0.67076    1.04611      0.60916  1.47s
   1282     0.70169     0.67076    1.04611      0.60916  1.27s
   1283     0.70169     0.67076    1.04611      0.60916  1.23s
   1284     0.70169     0.67076    1.04611      0.60916  1.11s
   1285     0.70169     0.67076    1.04611      0.60916  1.17s
   1286     0.70169     0.67076    1.04611      0.60916  1.23s
   1287     0.70169     0.67076    1.04611      0.60916  1.37s
   1288     0.70169     0.67076    1.04611      0.60916  1.13s
   1289     0.70169     0.67076    1.04611      0.60916  1.28s
   1290     0.70169     0.67076    1.04611      0.60916  1.14s
   1291     0.70169     0.67076    1.04611      0.60916  1.34s
   1292     0.70169     0.67076    1.04611      0.60916  1.18s
   1293     0.70169     0.67076    1.04611      0.60916  1.14s
   1294     0.70169     0.67076    1.04611      0.60916  1.27s
   1295     0.70169     0.67076    1.04611      0.60916  1.17s
   1296     0.70169     0.67076    1.04611      0.60916  1.14s
   1297     0.70169     0.67076    1.04611      0.60916  1.20s
   1298     0.70169     0.67076    1.04611      0.60916  1.22s
   1299     0.70169     0.67076    1.04611      0.60916  1.17s
   1300     0.70169     0.67076    1.04611      0.60916  1.16s
   1301     0.70169     0.67076    1.04611      0.60916  1.19s
   1302     0.70169     0.67076    1.04611      0.60916  1.50s
   1303     0.70169     0.67076    1.04611      0.60916  1.47s
   1304     0.70169     0.67076    1.04611      0.60916  1.41s
   1305     0.70169     0.67076    1.04611      0.60916  1.44s
   1306     0.70169     0.67076    1.04611      0.60916  1.39s
   1307     0.70169     0.67076    1.04611      0.60916  1.38s
   1308     0.70169     0.67076    1.04611      0.60916  1.68s
   1309     0.70169     0.67076    1.04611      0.60916  1.36s
   1310     0.70169     0.67076    1.04611      0.60916  1.14s
   1311     0.70169     0.67076    1.04611      0.60916  1.14s
   1312     0.70169     0.67076    1.04611      0.60916  1.13s
   1313     0.70169     0.67076    1.04611      0.60916  1.08s
   1314     0.70169     0.67076    1.04611      0.60916  1.13s
   1315     0.70169     0.67076    1.04611      0.60916  1.07s
   1316     0.70169     0.67076    1.04611      0.60916  1.12s
   1317     0.70169     0.67076    1.04611      0.60916  1.12s
   1318     0.70169     0.67076    1.04611      0.60916  1.17s
   1319     0.70169     0.67076    1.04611      0.60916  1.11s
   1320     0.70169     0.67076    1.04611      0.60916  1.16s
   1321     0.70169     0.67076    1.04611      0.60916  1.14s
   1322     0.70169     0.67076    1.04611      0.60916  1.11s
   1323     0.70169     0.67076    1.04611      0.60916  1.12s
   1324     0.70169     0.67076    1.04611      0.60916  1.07s
   1325     0.70169     0.67076    1.04611      0.60916  1.12s
   1326     0.70169     0.67076    1.04611      0.60916  1.19s
   1327     0.70169     0.67076    1.04611      0.60916  1.20s
   1328     0.70169     0.67076    1.04611      0.60916  1.23s
   1329     0.70169     0.67076    1.04611      0.60916  1.15s
   1330     0.70169     0.67076    1.04611      0.60916  1.13s
   1331     0.70169     0.67076    1.04611      0.60916  1.19s
   1332     0.70169     0.67076    1.04611      0.60916  1.20s
   1333     0.70169     0.67076    1.04611      0.60916  1.08s
   1334     0.70169     0.67076    1.04611      0.60916  1.09s
   1335     0.70169     0.67076    1.04611      0.60916  1.09s
   1336     0.70169     0.67076    1.04611      0.60916  1.09s
   1337     0.70169     0.67076    1.04611      0.60916  1.16s
   1338     0.70169     0.67076    1.04611      0.60916  1.13s
   1339     0.70169     0.67076    1.04611      0.60916  1.11s
   1340     0.70169     0.67076    1.04611      0.60916  1.14s
   1341     0.70169     0.67076    1.04611      0.60916  1.08s
   1342     0.70169     0.67076    1.04611      0.60916  1.18s
   1343     0.70169     0.67076    1.04611      0.60916  1.21s
   1344     0.70169     0.67076    1.04611      0.60916  1.16s
   1345     0.70169     0.67076    1.04611      0.60916  1.29s
   1346     0.70169     0.67076    1.04611      0.60916  1.14s
   1347     0.70169     0.67076    1.04611      0.60916  1.13s
   1348     0.70169     0.67076    1.04611      0.60916  1.13s
   1349     0.70169     0.67076    1.04611      0.60916  1.12s
   1350     0.70169     0.67076    1.04611      0.60916  1.19s
   1351     0.70169     0.67076    1.04611      0.60916  1.18s
   1352     0.70169     0.67076    1.04611      0.60916  1.09s
   1353     0.70169     0.67076    1.04611      0.60916  1.11s
   1354     0.70169     0.67076    1.04611      0.60916  1.19s
   1355     0.70169     0.67076    1.04611      0.60916  1.25s
   1356     0.70169     0.67076    1.04611      0.60916  1.11s
   1357     0.70169     0.67076    1.04611      0.60916  1.21s
   1358     0.70169     0.67076    1.04611      0.60916  1.37s
   1359     0.70169     0.67076    1.04611      0.60916  1.19s
   1360     0.70169     0.67076    1.04611      0.60916  1.20s
   1361     0.70169     0.67076    1.04611      0.60916  1.17s
   1362     0.70169     0.67076    1.04611      0.60916  1.22s
   1363     0.70169     0.67076    1.04611      0.60916  1.18s
   1364     0.70169     0.67076    1.04611      0.60916  1.16s
   1365     0.70169     0.67076    1.04611      0.60916  1.13s
   1366     0.70169     0.67076    1.04611      0.60916  1.15s
   1367     0.70169     0.67076    1.04611      0.60916  1.10s
   1368     0.70169     0.67076    1.04611      0.60916  1.14s
   1369     0.70169     0.67076    1.04611      0.60916  1.09s
   1370     0.70169     0.67076    1.04611      0.60916  1.11s
   1371     0.70169     0.67076    1.04611      0.60916  1.11s
   1372     0.70169     0.67076    1.04611      0.60916  1.08s
   1373     0.70169     0.67076    1.04611      0.60916  1.11s
   1374     0.70169     0.67076    1.04611      0.60916  1.10s
   1375     0.70169     0.67076    1.04611      0.60916  1.08s
   1376     0.70169     0.67076    1.04611      0.60916  1.11s
   1377     0.70169     0.67076    1.04611      0.60916  1.16s
   1378     0.70169     0.67076    1.04611      0.60916  1.09s
   1379     0.70169     0.67076    1.04611      0.60916  1.11s
   1380     0.70169     0.67076    1.04611      0.60916  1.10s
   1381     0.70169     0.67076    1.04611      0.60916  1.15s
   1382     0.70169     0.67076    1.04611      0.60916  1.26s
   1383     0.70169     0.67076    1.04611      0.60916  1.34s
   1384     0.70169     0.67076    1.04611      0.60916  1.69s
   1385     0.70169     0.67076    1.04611      0.60916  1.36s
   1386     0.70169     0.67076    1.04611      0.60916  1.28s
   1387     0.70169     0.67076    1.04611      0.60916  1.24s
   1388     0.70169     0.67076    1.04611      0.60916  1.23s
   1389     0.70169     0.67076    1.04611      0.60916  1.24s
   1390     0.70169     0.67076    1.04611      0.60916  1.23s
   1391     0.70169     0.67076    1.04611      0.60916  1.23s
   1392     0.70169     0.67076    1.04611      0.60916  1.25s
   1393     0.70169     0.67076    1.04611      0.60916  1.29s
   1394     0.70169     0.67076    1.04611      0.60916  1.25s
   1395     0.70169     0.67076    1.04611      0.60916  1.27s
   1396     0.70169     0.67076    1.04611      0.60916  1.40s
   1397     0.70169     0.67076    1.04611      0.60916  1.13s
   1398     0.70169     0.67076    1.04611      0.60916  1.07s
   1399     0.70169     0.67076    1.04611      0.60916  1.09s
   1400     0.70169     0.67076    1.04611      0.60916  1.10s
   1401     0.70169     0.67076    1.04611      0.60916  1.10s
   1402     0.70169     0.67076    1.04611      0.60916  1.09s
   1403     0.70169     0.67076    1.04611      0.60916  1.11s
   1404     0.70169     0.67076    1.04611      0.60916  1.08s
   1405     0.70169     0.67076    1.04611      0.60916  1.10s
   1406     0.70169     0.67076    1.04611      0.60916  1.08s
   1407     0.70169     0.67076    1.04611      0.60916  1.14s
   1408     0.70169     0.67076    1.04611      0.60916  1.13s
   1409     0.70169     0.67076    1.04611      0.60916  1.11s
   1410     0.70169     0.67076    1.04611      0.60916  1.10s
   1411     0.70169     0.67076    1.04611      0.60916  1.10s
   1412     0.70169     0.67076    1.04611      0.60916  1.15s
   1413     0.70169     0.67076    1.04611      0.60916  1.09s
   1414     0.70169     0.67076    1.04611      0.60916  1.11s
   1415     0.70169     0.67076    1.04611      0.60916  1.12s
   1416     0.70169     0.67076    1.04611      0.60916  1.17s
   1417     0.70169     0.67076    1.04611      0.60916  1.11s
   1418     0.70169     0.67076    1.04611      0.60916  1.09s
   1419     0.70169     0.67076    1.04611      0.60916  1.09s
   1420     0.70169     0.67076    1.04611      0.60916  1.11s
   1421     0.70169     0.67076    1.04611      0.60916  1.17s
   1422     0.70169     0.67076    1.04611      0.60916  1.10s
   1423     0.70169     0.67076    1.04611      0.60916  1.09s
   1424     0.70169     0.67076    1.04611      0.60916  1.10s
   1425     0.70169     0.67076    1.04611      0.60916  1.11s
   1426     0.70169     0.67076    1.04611      0.60916  1.08s
   1427     0.70169     0.67076    1.04611      0.60916  1.11s
   1428     0.70169     0.67076    1.04611      0.60916  1.09s
   1429     0.70169     0.67076    1.04611      0.60916  1.11s
   1430     0.70169     0.67076    1.04611      0.60916  1.09s
   1431     0.70169     0.67076    1.04611      0.60916  1.08s
   1432     0.70169     0.67076    1.04611      0.60916  1.10s
   1433     0.70169     0.67076    1.04611      0.60916  1.11s
   1434     0.70169     0.67076    1.04611      0.60916  1.09s
   1435     0.70169     0.67076    1.04611      0.60916  1.10s
   1436     0.70169     0.67076    1.04611      0.60916  1.07s
   1437     0.70169     0.67076    1.04611      0.60916  1.09s
   1438     0.70169     0.67076    1.04611      0.60916  1.09s
   1439     0.70169     0.67076    1.04611      0.60916  1.09s
   1440     0.70169     0.67076    1.04611      0.60916  1.07s
   1441     0.70169     0.67076    1.04611      0.60916  1.07s
   1442     0.70169     0.67076    1.04611      0.60916  1.08s
   1443     0.70169     0.67076    1.04611      0.60916  1.10s
   1444     0.70169     0.67076    1.04611      0.60916  1.08s
   1445     0.70169     0.67076    1.04611      0.60916  1.13s
   1446     0.70169     0.67076    1.04611      0.60916  1.14s
   1447     0.70169     0.67076    1.04611      0.60916  1.11s
   1448     0.70169     0.67076    1.04611      0.60916  1.11s
   1449     0.70169     0.67076    1.04611      0.60916  1.10s
   1450     0.70169     0.67076    1.04611      0.60916  1.08s
   1451     0.70169     0.67076    1.04611      0.60916  1.15s
   1452     0.70169     0.67076    1.04611      0.60916  1.13s
   1453     0.70169     0.67076    1.04611      0.60916  1.08s
   1454     0.70169     0.67076    1.04611      0.60916  1.19s
   1455     0.70169     0.67076    1.04611      0.60916  1.10s
   1456     0.70169     0.67076    1.04611      0.60916  1.09s
   1457     0.70169     0.67076    1.04611      0.60916  1.28s
   1458     0.70169     0.67076    1.04611      0.60916  1.27s
   1459     0.70169     0.67076    1.04611      0.60916  1.13s
   1460     0.70169     0.67076    1.04611      0.60916  1.19s
   1461     0.70169     0.67076    1.04611      0.60916  1.22s
   1462     0.70169     0.67076    1.04611      0.60916  1.09s
   1463     0.70169     0.67076    1.04611      0.60916  1.08s
   1464     0.70169     0.67076    1.04611      0.60916  1.09s
   1465     0.70169     0.67076    1.04611      0.60916  1.06s
   1466     0.70169     0.67076    1.04611      0.60916  1.24s
   1467     0.70169     0.67076    1.04611      0.60916  1.10s
   1468     0.70169     0.67076    1.04611      0.60916  1.16s
   1469     0.70169     0.67076    1.04611      0.60916  1.11s
   1470     0.70169     0.67076    1.04611      0.60916  1.09s
   1471     0.70169     0.67076    1.04611      0.60916  1.10s
   1472     0.70169     0.67076    1.04611      0.60916  1.11s
   1473     0.70169     0.67076    1.04611      0.60916  1.11s
   1474     0.70169     0.67076    1.04611      0.60916  1.08s
   1475     0.70169     0.67076    1.04611      0.60916  1.08s
   1476     0.70169     0.67076    1.04611      0.60916  1.11s
   1477     0.70169     0.67076    1.04611      0.60916  1.11s
   1478     0.70169     0.67076    1.04611      0.60916  1.11s
   1479     0.70169     0.67076    1.04611      0.60916  1.09s
   1480     0.70169     0.67076    1.04611      0.60916  1.09s
   1481     0.70169     0.67076    1.04611      0.60916  1.08s
   1482     0.70169     0.67076    1.04611      0.60916  1.10s
   1483     0.70169     0.67076    1.04611      0.60916  1.08s
   1484     0.70169     0.67076    1.04611      0.60916  1.08s
   1485     0.70169     0.67076    1.04611      0.60916  1.08s
   1486     0.70169     0.67076    1.04611      0.60916  1.07s
   1487     0.70169     0.67076    1.04611      0.60916  1.08s
   1488     0.70169     0.67076    1.04611      0.60916  1.11s
   1489     0.70169     0.67076    1.04611      0.60916  1.10s
   1490     0.70169     0.67076    1.04611      0.60916  1.09s
   1491     0.70169     0.67076    1.04611      0.60916  1.08s
   1492     0.70169     0.67076    1.04611      0.60916  1.08s
   1493     0.70169     0.67076    1.04611      0.60916  1.09s
   1494     0.70169     0.67076    1.04611      0.60916  1.09s
   1495     0.70169     0.67076    1.04611      0.60916  1.08s
   1496     0.70169     0.67076    1.04611      0.60916  1.09s
   1497     0.70169     0.67076    1.04611      0.60916  1.08s
   1498     0.70169     0.67076    1.04611      0.60916  1.10s
   1499     0.70169     0.67076    1.04611      0.60916  1.14s
   1500     0.70169     0.67076    1.04611      0.60916  1.10s
Out[50]:
NeuralNet(X_tensor_type=None,
     batch_iterator_test=<nolearn.lasagne.base.BatchIterator object at 0x000000001AE3EBA8>,
     batch_iterator_train=<nolearn.lasagne.base.BatchIterator object at 0x000000001AE3EA90>,
     check_input=True, custom_scores=None,
     hidden_nonlinearity=<function rectify at 0x000000001A6EDB38>,
     hidden_num_units=200, input_shape=(None, 1, 96, 96),
     layers=[('input', <class 'lasagne.layers.input.InputLayer'>), ('hidden', <class 'lasagne.layers.dense.DenseLayer'>), ('output', <class 'lasagne.layers.dense.DenseLayer'>)],
     loss=None, max_epochs=1500, more_params={},
     objective=<function objective at 0x000000001AE3A828>,
     objective_loss_function=<function categorical_crossentropy at 0x000000001AD6DAC8>,
     on_batch_finished=[],
     on_epoch_finished=[<nolearn.lasagne.handlers.PrintLog instance at 0x000000007F733488>],
     on_training_finished=[],
     on_training_started=[<nolearn.lasagne.handlers.PrintLayerInfo instance at 0x00000000838D2C08>],
     output_nonlinearity=<function softmax at 0x000000001A6EDA58>,
     output_num_units=15, regression=False, scores_train=[],
     scores_valid=[],
     train_split=<nolearn.lasagne.base.TrainSplit object at 0x000000001AE3EBE0>,
     update=<function adam at 0x000000001AD78908>,
     update_learning_rate=0.1, use_label_encoder=False, verbose=1,
     y_tensor_type=TensorType(int32, vector))

In [22]:
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras import backend as K
from keras.optimizers import Adam
from keras.utils import np_utils


Y_Keras = np_utils.to_categorical(Y, 15)
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense, Activation,Dropout
model = Sequential()
model.add(Dense(512, input_dim=9216,activation='relu'))
model.add(Dense(15,activation='softmax'))

# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])

import time
model.fit((X.reshape(-1,9216).astype(np.uint8)), Y_Keras, nb_epoch=10, batch_size=50,verbose=1,
         validation_data=(X_test.reshape(-1,9216).astype(np.uint8), np_utils.to_categorical(Y_test, 15)))


Train on 2062 samples, validate on 15 samples
Epoch 1/10
2062/2062 [==============================] - 6s - loss: 1.0105 - acc: 0.6358 - val_loss: 0.7210 - val_acc: 0.8000
Epoch 2/10
2062/2062 [==============================] - 3s - loss: 0.6854 - acc: 0.7396 - val_loss: 0.6561 - val_acc: 0.7333
Epoch 3/10
2062/2062 [==============================] - 3s - loss: 0.5600 - acc: 0.8050 - val_loss: 0.5918 - val_acc: 0.7333
Epoch 4/10
2062/2062 [==============================] - 4s - loss: 0.4899 - acc: 0.8274 - val_loss: 0.7485 - val_acc: 0.6667
Epoch 5/10
2062/2062 [==============================] - 4s - loss: 0.4483 - acc: 0.8448 - val_loss: 0.4979 - val_acc: 0.7333
Epoch 6/10
2062/2062 [==============================] - 3s - loss: 0.3565 - acc: 0.8851 - val_loss: 0.4109 - val_acc: 0.8000
Epoch 7/10
2062/2062 [==============================] - 3s - loss: 0.3055 - acc: 0.8957 - val_loss: 0.4790 - val_acc: 0.8000
Epoch 8/10
2062/2062 [==============================] - 5s - loss: 0.2581 - acc: 0.9243 - val_loss: 0.4445 - val_acc: 0.7333
Epoch 9/10
2062/2062 [==============================] - 4s - loss: 0.2377 - acc: 0.9239 - val_loss: 0.4291 - val_acc: 0.8000
Epoch 10/10
2062/2062 [==============================] - 5s - loss: 0.1904 - acc: 0.9471 - val_loss: 0.4283 - val_acc: 0.7333
Out[22]:
<keras.callbacks.History at 0x166e7128>

In [23]:
model = Sequential()
model.add(Dense(512, input_dim=9216))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(15))
model.add(Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])

model.fit((X.reshape(-1,9216).astype(np.uint8)), Y_Keras, nb_epoch=10, batch_size=10,verbose=1,
         validation_data=(X_test.reshape(-1,9216).astype(np.uint8), np_utils.to_categorical(Y_test, 15)))


____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
dense_8 (Dense)                  (None, 512)           4719104     dense_input_4[0][0]              
____________________________________________________________________________________________________
activation_4 (Activation)        (None, 512)           0           dense_8[0][0]                    
____________________________________________________________________________________________________
dropout_3 (Dropout)              (None, 512)           0           activation_4[0][0]               
____________________________________________________________________________________________________
dense_9 (Dense)                  (None, 512)           262656      dropout_3[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_9[0][0]                    
____________________________________________________________________________________________________
dropout_4 (Dropout)              (None, 512)           0           activation_5[0][0]               
____________________________________________________________________________________________________
dense_10 (Dense)                 (None, 15)            7695        dropout_4[0][0]                  
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 15)            0           dense_10[0][0]                   
====================================================================================================
Total params: 4989455
____________________________________________________________________________________________________
Train on 2062 samples, validate on 15 samples
Epoch 1/10
2062/2062 [==============================] - 23s - loss: 0.8280 - acc: 0.6290 - val_loss: 0.6365 - val_acc: 0.6000
Epoch 2/10
2062/2062 [==============================] - 19s - loss: 0.5170 - acc: 0.7459 - val_loss: 0.6507 - val_acc: 0.8000
Epoch 3/10
2062/2062 [==============================] - 26s - loss: 0.4181 - acc: 0.8012 - val_loss: 0.4983 - val_acc: 0.8000
Epoch 4/10
2062/2062 [==============================] - 19s - loss: 0.3299 - acc: 0.8540 - val_loss: 0.5947 - val_acc: 0.8000
Epoch 5/10
2062/2062 [==============================] - 24s - loss: 0.2729 - acc: 0.8846 - val_loss: 0.5745 - val_acc: 0.7333
Epoch 6/10
2062/2062 [==============================] - 23s - loss: 0.2245 - acc: 0.9093 - val_loss: 0.5834 - val_acc: 0.7333
Epoch 7/10
2062/2062 [==============================] - 19s - loss: 0.2019 - acc: 0.9171 - val_loss: 0.6370 - val_acc: 0.7333
Epoch 8/10
2062/2062 [==============================] - 28s - loss: 0.1646 - acc: 0.9340 - val_loss: 0.9770 - val_acc: 0.7333
Epoch 9/10
2062/2062 [==============================] - 34s - loss: 0.1387 - acc: 0.9413 - val_loss: 0.7005 - val_acc: 0.8667
Epoch 10/10
2062/2062 [==============================] - 36s - loss: 0.1124 - acc: 0.9559 - val_loss: 1.0708 - val_acc: 0.6667
Out[23]:
<keras.callbacks.History at 0x1bdcfa20>

In [ ]:
def CNN(n_epochs):
    net1 = NeuralNet(
        layers=[
        ('input', layers.InputLayer),
        ('conv1', layers.Conv2DLayer),      #Convolutional layer.  Params defined below
        ('pool1', layers.MaxPool2DLayer),   # Like downsampling, for execution speed
        ('conv2', layers.Conv2DLayer),
        ('hidden3', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ],

    input_shape=(None, 1, 96, 96),
    conv1_num_filters=7, 
    conv1_filter_size=(3, 3), 
    conv1_nonlinearity=lasagne.nonlinearities.rectify,
        
    pool1_pool_size=(2, 2),
        
    conv2_num_filters=12, 
    conv2_filter_size=(2, 2),    
    conv2_nonlinearity=lasagne.nonlinearities.rectify,
        
    hidden3_num_units=1000,
    output_num_units=15, 
    output_nonlinearity=lasagne.nonlinearities.softmax,

    update_learning_rate=0.0001,
    update_momentum=0.9,
    

    max_epochs=n_epochs,
    verbose=1,
    )
    return net1

prediction = lasagne.layers.get_output('conv1')

cnn = CNN(1000).fit((X.reshape(-1,1,96,96).astype(np.uint8)), Y.astype(np.uint8)) # train the CNN model for 15 epochs


# Neural Network with 25408433 learnable parameters

## Layer information

  #  name     size
---  -------  --------
  0  input    1x96x96
  1  conv1    7x94x94
  2  pool1    7x47x47
  3  conv2    12x46x46
  4  hidden3  1000
  5  output   15

  epoch    trn loss    val loss    trn/val    valid acc  dur
-------  ----------  ----------  ---------  -----------  ------
      1     2.70684     2.70195    1.00181      0.60916  44.63s
      2     2.69764     2.68985    1.00289      0.60916  50.07s
      3     2.68376     2.67329    1.00392      0.60916  47.69s
      4     2.66456     2.64920    1.00580      0.60916  42.25s
      5     2.63497     2.60806    1.01032      0.60916  44.36s
      6     2.58138     2.52950    1.02051      0.60916  42.83s
      7     2.47649     2.37018    1.04485      0.60916  49.47s
      8     2.26611     2.05720    1.10155      0.60916  47.87s
      9     1.88085     1.54077    1.22072      0.60916  36.62s
     10     1.36008     1.03546    1.31350      0.60916  51.18s
     11     0.96240     0.80594    1.19414      0.60916  48.94s
     12     0.80102     0.74827    1.07051      0.60916  45.71s
     13     0.80975     0.72965    1.10978      0.60916  30.30s
     14     0.81664     0.71370    1.14424      0.60916  52.95s
     15     0.80060     0.70973    1.12802      0.60916  50.57s
     16     0.79849     0.70806    1.12772      0.60916  52.69s
     17     0.79897     0.70586    1.13191      0.60916  52.29s
     18     0.79751     0.70418    1.13253      0.60916  45.29s
     19     0.79564     0.70311    1.13161      0.60916  43.87s
     20     0.79456     0.70212    1.13165      0.60916  47.46s
     21     0.79339     0.70107    1.13168      0.60916  50.97s
     22     0.79139     0.70042    1.12987      0.60916  31.31s
     23     0.79031     0.69971    1.12948      0.60916  47.05s
     24     0.78905     0.69894    1.12893      0.60916  51.05s
     25     0.78722     0.69844    1.12711      0.60916  52.62s
     26     0.78612     0.69789    1.12642      0.60916  49.26s
     27     0.78485     0.69737    1.12544      0.60916  42.16s
     28     0.78356     0.69690    1.12435      0.60916  51.01s
     29     0.78234     0.69646    1.12331      0.60916  45.06s
     30     0.78113     0.69604    1.12226      0.60916  51.61s
     31     0.77995     0.69564    1.12121      0.60916  51.82s
     32     0.77879     0.69525    1.12016      0.60916  45.23s
     33     0.77766     0.69489    1.11911      0.60916  47.70s
     34     0.77655     0.69454    1.11808      0.60916  45.74s
     35     0.77547     0.69421    1.11706      0.60916  41.93s
     36     0.77449     0.69375    1.11639      0.60916  48.83s
     37     0.77289     0.69353    1.11444      0.60916  51.44s
     38     0.77207     0.69322    1.11374      0.60916  52.53s
     39     0.77120     0.69275    1.11325      0.60916  43.98s
     40     0.76943     0.69259    1.11095      0.60916  44.79s
     41     0.76876     0.69232    1.11042      0.60916  46.67s
     42     0.76790     0.69203    1.10963      0.60916  57.47s
     43     0.76698     0.69179    1.10870      0.60916  50.36s
     44     0.76614     0.69155    1.10786      0.60916  49.07s
     45     0.76533     0.69131    1.10707      0.60916  51.05s
     46     0.76452     0.69108    1.10626      0.60916  46.71s
     47     0.76373     0.69086    1.10547      0.60916  47.08s
     48     0.76300     0.69054    1.10493      0.60916  43.78s
     49     0.76179     0.69040    1.10341      0.60916  40.55s
     50     0.76119     0.69019    1.10287      0.60916  55.09s
     51     0.76050     0.68998    1.10220      0.60916  53.85s
     52     0.75958     0.68974    1.10125      0.60916  49.31s
     53     0.75883     0.68953    1.10050      0.60916  47.78s
     54     0.75809     0.68936    1.09970      0.60916  54.37s
     55     0.75746     0.68919    1.09906      0.60916  51.55s
     56     0.75684     0.68901    1.09845      0.60916  48.29s
     57     0.75621     0.68884    1.09781      0.60916  46.42s
     58     0.75561     0.68865    1.09723      0.60916  43.82s
     59     0.75491     0.68851    1.09645      0.60916  40.06s
     60     0.75436     0.68835    1.09589      0.60916  42.15s
     61     0.75379     0.68819    1.09532      0.60916  42.58s
     62     0.75322     0.68804    1.09473      0.60916  42.78s
     63     0.75266     0.68789    1.09415      0.60916  41.23s
     64     0.75212     0.68775    1.09359      0.60916  41.95s
     65     0.75159     0.68761    1.09304      0.60916  40.63s
     66     0.75106     0.68747    1.09250      0.60916  40.82s
     67     0.75055     0.68734    1.09196      0.60916  41.09s
     68     0.75004     0.68721    1.09143      0.60916  41.82s
     69     0.74954     0.68708    1.09091      0.60916  40.61s
     70     0.74905     0.68695    1.09040      0.60916  41.99s
     71     0.74857     0.68683    1.08990      0.60916  45.03s
     72     0.74819     0.68652    1.08983      0.60916  40.95s
     73     0.74688     0.68644    1.08806      0.60916  42.92s
     74     0.74638     0.68631    1.08752      0.60916  41.20s
     75     0.74584     0.68621    1.08689      0.60916  46.42s
     76     0.74546     0.68609    1.08654      0.60916  41.34s
     77     0.74509     0.68588    1.08632      0.60916  41.10s
     78     0.74427     0.68582    1.08523      0.60916  50.11s
     79     0.74397     0.68571    1.08495      0.60916  44.05s
     80     0.74361     0.68560    1.08462      0.60916  48.30s
     81     0.74321     0.68549    1.08420      0.60916  49.25s
     82     0.74282     0.68539    1.08379      0.60916  48.47s
     83     0.74245     0.68529    1.08341      0.60916  57.00s
     84     0.74208     0.68519    1.08303      0.60916  52.19s
     85     0.74172     0.68510    1.08264      0.60916  42.11s
     86     0.74145     0.68487    1.08261      0.60916  52.60s
     87     0.74042     0.68485    1.08114      0.60916  49.43s
     88     0.74022     0.68477    1.08098      0.60916  42.00s
     89     0.73985     0.68465    1.08062      0.60916  44.17s
     90     0.73947     0.68454    1.08024      0.60916  47.00s
     91     0.73910     0.68445    1.07983      0.60916  42.80s
     92     0.73875     0.68438    1.07946      0.60916  45.59s
     93     0.73845     0.68429    1.07915      0.60916  47.38s
     94     0.73814     0.68421    1.07883      0.60916  42.74s
     95     0.73783     0.68413    1.07850      0.60916  48.27s
     96     0.73752     0.68405    1.07817      0.60916  47.12s
     97     0.73722     0.68397    1.07785      0.60916  43.54s
     98     0.73692     0.68389    1.07754      0.60916  49.13s
     99     0.73661     0.68382    1.07721      0.60916  47.21s
    100     0.73632     0.68374    1.07690      0.60916  43.87s
    101     0.73603     0.68367    1.07659      0.60916  46.42s
    102     0.73575     0.68360    1.07629      0.60916  47.80s
    103     0.73546     0.68353    1.07598      0.60916  49.01s
    104     0.73518     0.68346    1.07568      0.60916  44.60s
    105     0.73491     0.68339    1.07539      0.60916  46.23s
    106     0.73463     0.68332    1.07509      0.60916  44.07s
    107     0.73436     0.68325    1.07480      0.60916  50.27s
    108     0.73410     0.68319    1.07452      0.60916  40.69s
    109     0.73383     0.68312    1.07423      0.60916  48.91s
    110     0.73330     0.68303    1.07360      0.60916  46.04s
    111     0.73303     0.68293    1.07336      0.60916  47.71s
    112     0.73269     0.68287    1.07297      0.60916  49.15s
    113     0.73244     0.68281    1.07268      0.60916  48.53s
    114     0.73221     0.68275    1.07244      0.60916  40.67s
    115     0.73198     0.68269    1.07220      0.60916  40.92s
    116     0.73174     0.68263    1.07194      0.60916  42.71s
    117     0.73150     0.68257    1.07169      0.60916  42.35s
    118     0.73127     0.68251    1.07144      0.60916  44.32s
    119     0.73104     0.68246    1.07119      0.60916  45.24s
    120     0.73081     0.68240    1.07094      0.60916  42.30s
    121     0.73059     0.68234    1.07070      0.60916  45.47s
    122     0.73036     0.68229    1.07046      0.60916  44.74s
    123     0.73014     0.68224    1.07022      0.60916  47.43s
    124     0.72992     0.68218    1.06998      0.60916  45.02s
    125     0.72970     0.68213    1.06974      0.60916  50.11s
    126     0.72949     0.68208    1.06951      0.60916  42.22s
    127     0.72928     0.68203    1.06928      0.60916  47.86s
    128     0.72907     0.68198    1.06905      0.60916  46.09s
    129     0.72886     0.68193    1.06882      0.60916  10861.08s
    130     0.72865     0.68188    1.06860      0.60916  37935.18s

In [27]:
def CNN(n_epochs):
    net1 = NeuralNet(
        layers=[
        ('input', layers.InputLayer),
        ('conv1', layers.Conv2DLayer),      #Convolutional layer.  Params defined below
        ('pool1', layers.MaxPool2DLayer),   # Like downsampling, for execution speed
        ('conv2', layers.Conv2DLayer),
        ('hidden3', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ],

    input_shape=(None, 1, 96, 96),
    conv1_num_filters=7, 
    conv1_filter_size=(3, 3), 
    conv1_nonlinearity=lasagne.nonlinearities.rectify,
        
    pool1_pool_size=(2, 2),
        
    conv2_num_filters=12, 
    conv2_filter_size=(2, 2),    
    conv2_nonlinearity=lasagne.nonlinearities.rectify,
        
    hidden3_num_units=1000,
    output_num_units=15, 
    output_nonlinearity=lasagne.nonlinearities.softmax,

    update_learning_rate=0.0001,
    update_momentum=0.9,

    max_epochs=n_epochs,
    verbose=1,
    )
    return net1

cnn = CNN(500).fit((X.reshape(-1,1,96,96).astype(np.uint8)), Y.astype(np.uint8)) # train the CNN model for 15 epochs


# Neural Network with 25408433 learnable parameters

## Layer information

  #  name     size
---  -------  --------
  0  input    1x96x96
  1  conv1    7x94x94
  2  pool1    7x47x47
  3  conv2    12x46x46
  4  hidden3  1000
  5  output   15

  epoch    trn loss    val loss    trn/val    valid acc  dur
-------  ----------  ----------  ---------  -----------  ------
      1     2.71286     2.68199    1.01151      0.09201  38.10s
      2     2.67701     2.62813    1.01860      0.34867  34.35s
      3     2.62043     2.54286    1.03051      0.56174  36.38s
      4     2.51866     2.37385    1.06100      0.58596  35.82s
      5     2.29321     1.98945    1.15269      0.60775  36.45s
      6     1.80290     1.29479    1.39243      0.60775  37.28s
      7     1.17065     0.84128    1.39150      0.60775  34.07s
      8     0.80062     0.74194    1.07909      0.58354  23.43s
      9     0.82500     0.72519    1.13763      0.52300  32.00s
     10     0.83458     0.70614    1.18189      0.59564  27.89s
     11     0.80339     0.70625    1.13754      0.58838  29.57s
     12     0.80219     0.70463    1.13845      0.57869  31.71s
     13     0.79730     0.70245    1.13502      0.56901  36.65s
     14     0.78917     0.70178    1.12452      0.56416  29.39s
     15     0.78424     0.70122    1.11840      0.56174  36.53s
     16     0.77947     0.70078    1.11229      0.56659  37.43s
     17     0.77545     0.70004    1.10772      0.56901  36.36s
     18     0.77156     0.69957    1.10291      0.56659  34.80s
     19     0.76859     0.69914    1.09934      0.56901  34.23s
     20     0.76517     0.69882    1.09495      0.56659  33.63s
     21     0.76198     0.69854    1.09082      0.56659  37.43s
     22     0.75929     0.69824    1.08744      0.56174  37.43s
     23     0.75663     0.69807    1.08389      0.55690  34.89s
     24     0.75448     0.69780    1.08122      0.55690  38.37s
     25     0.75195     0.69761    1.07789      0.55932  37.56s
     26     0.74952     0.69753    1.07454      0.55932  38.80s
     27     0.74691     0.69759    1.07071      0.55690  33.33s
     28     0.74430     0.69753    1.06705      0.54722  36.02s
     29     0.74213     0.69746    1.06405      0.54722  34.41s
     30     0.73970     0.69754    1.06045      0.54237  37.37s
     31     0.73773     0.69758    1.05756      0.54237  40.80s
     32     0.73589     0.69756    1.05494      0.54479  36.64s
     33     0.73396     0.69750    1.05228      0.54237  35.71s
     34     0.73213     0.69746    1.04970      0.53753  37.15s
     35     0.73040     0.69737    1.04736      0.53995  32.97s

In [ ]:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D


model = Sequential()

model.add(Convolution2D(7, 10, 10,
                        border_mode='valid',
                        input_shape=(1, 96, 96)))
model.add(Activation('relu'))
model.add(Convolution2D(7, 10, 10))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(15))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
model.fit((X.reshape(-1,1,96,96).astype(np.uint8)), Y_Keras, batch_size=20, nb_epoch=30,
          verbose=1, validation_data=(X_test.reshape(-1,1,96,96).astype(np.uint8), np_utils.to_categorical(Y_test, 15)))
#score = model.evaluate(X_test, Y_test, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])


Train on 2062 samples, validate on 15 samples
Epoch 1/30
 240/2062 [==>...........................] - ETA: 390s - loss: 1.6402 - acc: 0.5500

In [9]:
print ('Attempt to identify the faces using the eigen vectors from the image')

from scipy.spatial.distance import pdist, squareform
from scipy.cluster.hierarchy import linkage, dendrogram 

all_eigens = np.zeros((1,96))
for i in range(len(faces)):
    cov_mat = np.cov(faces[i,:,:])
    eigen_vals,eigen_vecs = np.linalg.eig(cov_mat)
    all_eigens = np.vstack((all_eigens,eigen_vals.reshape(1,96)))
all_eigens = all_eigens[1:,:]

data_dist = pdist(all_eigens[:30,:]) # computing the distance
data_link = linkage(data_dist) # computing the linkage

dendrogram(data_link,labels=all_eigens[:30,:].dtype.names)
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.suptitle('Samples clustering', fontweight='bold', fontsize=15);


Attempt to identify the faces using the eigen vectors from the image

In [10]:
print ('Attempt to identify the faces using the PCA  from the image')

from sklearn.decomposition import PCA
pca = PCA(n_components=95)

pca_values = np.zeros((1,95))
for i in range(len(faces)):
    pca.fit(faces[i,:,:]) 
    pca_values = np.vstack((pca_values,pca.explained_variance_ratio_.reshape(1,95)))
pca_values = pca_values[1:,:]*100

data_dist = pdist(pca_values[:30,:]) # computing the distance
data_link = linkage(data_dist) # computing the linkage

dendrogram(data_link,labels=pca_values[:30,:].dtype.names)
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.suptitle('Samples clustering', fontweight='bold', fontsize=15);


Attempt to identify the faces using the PCA  from the image

In [11]:
print ('Attempt to identify the faces using the SVD  from the image')

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=95, random_state=42)
svd_values = np.zeros((1,95))
for i in range(len(faces)):
    svd.fit(faces[i,:,:]) 
    svd_values = np.vstack((svd_values,svd.explained_variance_ratio_.reshape(1,95)))
svd_values = svd_values[1:,:]

data_dist = pdist(svd_values[:30,:]) # computing the distance
data_link = linkage(data_dist) # computing the linkage

dendrogram(data_link,labels=svd_values[:30,:].dtype.names)
plt.xlabel('Samples')
plt.ylabel('Distance')
plt.suptitle('Samples clustering', fontweight='bold', fontsize=15);


Attempt to identify the faces using the SVD  from the image

In [21]:
i = 1
n_faces = 10
print ('There are multiple faces for index  %d and with length %d ' % (i , n_faces))


There are multiple faces for index  1 and with length 10 

In [ ]: