In [3]:
import numpy as np
import cv2
import time
import os
os.chdir("/home/mckc/Imagedb/")
import uuid
import scipy.misc
face_cascade = cv2.CascadeClassifier('/home/mckc/Downloads/opencv-2.4.13/data/haarcascades_GPU/haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture('/home/mckc/Downloads/2.mp4')
In [ ]:
i = 0
while(cap.grab()):
#print 'inside'
time.sleep(0.01)
ret, frame = cap.read()
if i % 9 == 0:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('Video', gray)
gray = cv2.equalizeHist(gray)
faces = face_cascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(50, 50),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)
# Draw a rectangle around the faces
if len(faces)>0:
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
fac = np.array(gray)[y:(y+h),x:(x+h)]
scipy.misc.toimage(fac).save(str(uuid.uuid4()) +'.jpg')
fac = np.array(frame)[y:(y+h),x:(x+h)]
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
i = i + 1
cap.release()
cv2.destroyAllWindows()
In [ ]: