Sentiment Classification & How To "Frame Problems" for a Neural Network

by Andrew Trask

What You Should Already Know

  • neural networks, forward and back-propagation
  • stochastic gradient descent
  • mean squared error
  • and train/test splits

Where to Get Help if You Need it

  • Re-watch previous Udacity Lectures
  • Leverage the recommended Course Reading Material - Grokking Deep Learning (40% Off: traskud17)
  • Shoot me a tweet @iamtrask

Tutorial Outline:

  • Intro: The Importance of "Framing a Problem"
  • Curate a Dataset
  • Developing a "Predictive Theory"
  • PROJECT 1: Quick Theory Validation
  • Transforming Text to Numbers
  • PROJECT 2: Creating the Input/Output Data
  • Putting it all together in a Neural Network
  • PROJECT 3: Building our Neural Network
  • Understanding Neural Noise
  • PROJECT 4: Making Learning Faster by Reducing Noise
  • Analyzing Inefficiencies in our Network
  • PROJECT 5: Making our Network Train and Run Faster
  • Further Noise Reduction
  • PROJECT 6: Reducing Noise by Strategically Reducing the Vocabulary
  • Analysis: What's going on in the weights?

Lesson: Curate a Dataset


In [2]:
def pretty_print_review_and_label(i):
    print(labels[i] + "\t:\t" + reviews[i][:80] + "...")

g = open('reviews.txt','r') # What we know!
reviews = list(map(lambda x:x[:-1],g.readlines()))
g.close()

g = open('labels.txt','r') # What we WANT to know!
labels = list(map(lambda x:x[:-1].upper(),g.readlines()))
g.close()

In [3]:
len(reviews)


Out[3]:
25000

In [4]:
reviews[0]


Out[4]:
'bromwell high is a cartoon comedy . it ran at the same time as some other programs about school life  such as  teachers  . my   years in the teaching profession lead me to believe that bromwell high  s satire is much closer to reality than is  teachers  . the scramble to survive financially  the insightful students who can see right through their pathetic teachers  pomp  the pettiness of the whole situation  all remind me of the schools i knew and their students . when i saw the episode in which a student repeatedly tried to burn down the school  i immediately recalled . . . . . . . . . at . . . . . . . . . . high . a classic line inspector i  m here to sack one of your teachers . student welcome to bromwell high . i expect that many adults of my age think that bromwell high is far fetched . what a pity that it isn  t   '

In [5]:
labels[0]


Out[5]:
'POSITIVE'

Lesson: Develop a Predictive Theory


In [6]:
print("labels.txt \t : \t reviews.txt\n")
pretty_print_review_and_label(2137)
pretty_print_review_and_label(12816)
pretty_print_review_and_label(6267)
pretty_print_review_and_label(21934)
pretty_print_review_and_label(5297)
pretty_print_review_and_label(4998)


labels.txt 	 : 	 reviews.txt

NEGATIVE	:	this movie is terrible but it has some good effects .  ...
POSITIVE	:	adrian pasdar is excellent is this film . he makes a fascinating woman .  ...
NEGATIVE	:	comment this movie is impossible . is terrible  very improbable  bad interpretat...
POSITIVE	:	excellent episode movie ala pulp fiction .  days   suicides . it doesnt get more...
NEGATIVE	:	if you haven  t seen this  it  s terrible . it is pure trash . i saw this about ...
POSITIVE	:	this schiffer guy is a real genius  the movie is of excellent quality and both e...

Project 1: Quick Theory Validation


In [7]:
from collections import Counter
import numpy as np

In [8]:
positive_counts = Counter()
negative_counts = Counter()
total_counts = Counter()

In [9]:
for i in range(len(reviews)):
    if(labels[i] == 'POSITIVE'):
        for word in reviews[i].split(" "):
            positive_counts[word] += 1
            total_counts[word] += 1
    else:
        for word in reviews[i].split(" "):
            negative_counts[word] += 1
            total_counts[word] += 1

In [10]:
positive_counts.most_common()


Out[10]:
[('', 550468),
 ('the', 173324),
 ('.', 159654),
 ('and', 89722),
 ('a', 83688),
 ('of', 76855),
 ('to', 66746),
 ('is', 57245),
 ('in', 50215),
 ('br', 49235),
 ('it', 48025),
 ('i', 40743),
 ('that', 35630),
 ('this', 35080),
 ('s', 33815),
 ('as', 26308),
 ('with', 23247),
 ('for', 22416),
 ('was', 21917),
 ('film', 20937),
 ('but', 20822),
 ('movie', 19074),
 ('his', 17227),
 ('on', 17008),
 ('you', 16681),
 ('he', 16282),
 ('are', 14807),
 ('not', 14272),
 ('t', 13720),
 ('one', 13655),
 ('have', 12587),
 ('be', 12416),
 ('by', 11997),
 ('all', 11942),
 ('who', 11464),
 ('an', 11294),
 ('at', 11234),
 ('from', 10767),
 ('her', 10474),
 ('they', 9895),
 ('has', 9186),
 ('so', 9154),
 ('like', 9038),
 ('about', 8313),
 ('very', 8305),
 ('out', 8134),
 ('there', 8057),
 ('she', 7779),
 ('what', 7737),
 ('or', 7732),
 ('good', 7720),
 ('more', 7521),
 ('when', 7456),
 ('some', 7441),
 ('if', 7285),
 ('just', 7152),
 ('can', 7001),
 ('story', 6780),
 ('time', 6515),
 ('my', 6488),
 ('great', 6419),
 ('well', 6405),
 ('up', 6321),
 ('which', 6267),
 ('their', 6107),
 ('see', 6026),
 ('also', 5550),
 ('we', 5531),
 ('really', 5476),
 ('would', 5400),
 ('will', 5218),
 ('me', 5167),
 ('had', 5148),
 ('only', 5137),
 ('him', 5018),
 ('even', 4964),
 ('most', 4864),
 ('other', 4858),
 ('were', 4782),
 ('first', 4755),
 ('than', 4736),
 ('much', 4685),
 ('its', 4622),
 ('no', 4574),
 ('into', 4544),
 ('people', 4479),
 ('best', 4319),
 ('love', 4301),
 ('get', 4272),
 ('how', 4213),
 ('life', 4199),
 ('been', 4189),
 ('because', 4079),
 ('way', 4036),
 ('do', 3941),
 ('made', 3823),
 ('films', 3813),
 ('them', 3805),
 ('after', 3800),
 ('many', 3766),
 ('two', 3733),
 ('too', 3659),
 ('think', 3655),
 ('movies', 3586),
 ('characters', 3560),
 ('character', 3514),
 ('don', 3468),
 ('man', 3460),
 ('show', 3432),
 ('watch', 3424),
 ('seen', 3414),
 ('then', 3358),
 ('little', 3341),
 ('still', 3340),
 ('make', 3303),
 ('could', 3237),
 ('never', 3226),
 ('being', 3217),
 ('where', 3173),
 ('does', 3069),
 ('over', 3017),
 ('any', 3002),
 ('while', 2899),
 ('know', 2833),
 ('did', 2790),
 ('years', 2758),
 ('here', 2740),
 ('ever', 2734),
 ('end', 2696),
 ('these', 2694),
 ('such', 2590),
 ('real', 2568),
 ('scene', 2567),
 ('back', 2547),
 ('those', 2485),
 ('though', 2475),
 ('off', 2463),
 ('new', 2458),
 ('your', 2453),
 ('go', 2440),
 ('acting', 2437),
 ('plot', 2432),
 ('world', 2429),
 ('scenes', 2427),
 ('say', 2414),
 ('through', 2409),
 ('makes', 2390),
 ('better', 2381),
 ('now', 2368),
 ('work', 2346),
 ('young', 2343),
 ('old', 2311),
 ('ve', 2307),
 ('find', 2272),
 ('both', 2248),
 ('before', 2177),
 ('us', 2162),
 ('again', 2158),
 ('series', 2153),
 ('quite', 2143),
 ('something', 2135),
 ('cast', 2133),
 ('should', 2121),
 ('part', 2098),
 ('always', 2088),
 ('lot', 2087),
 ('another', 2075),
 ('actors', 2047),
 ('director', 2040),
 ('family', 2032),
 ('between', 2016),
 ('own', 2016),
 ('m', 1998),
 ('may', 1997),
 ('same', 1972),
 ('role', 1967),
 ('watching', 1966),
 ('every', 1954),
 ('funny', 1953),
 ('doesn', 1935),
 ('performance', 1928),
 ('few', 1918),
 ('bad', 1907),
 ('look', 1900),
 ('re', 1884),
 ('why', 1855),
 ('things', 1849),
 ('times', 1832),
 ('big', 1815),
 ('however', 1795),
 ('actually', 1790),
 ('action', 1789),
 ('going', 1783),
 ('bit', 1757),
 ('comedy', 1742),
 ('down', 1740),
 ('music', 1738),
 ('must', 1728),
 ('take', 1709),
 ('saw', 1692),
 ('long', 1690),
 ('right', 1688),
 ('fun', 1686),
 ('fact', 1684),
 ('excellent', 1683),
 ('around', 1674),
 ('didn', 1672),
 ('without', 1671),
 ('thing', 1662),
 ('thought', 1639),
 ('got', 1635),
 ('each', 1630),
 ('day', 1614),
 ('feel', 1597),
 ('seems', 1596),
 ('come', 1594),
 ('done', 1586),
 ('beautiful', 1580),
 ('especially', 1572),
 ('played', 1571),
 ('almost', 1566),
 ('want', 1562),
 ('yet', 1556),
 ('give', 1553),
 ('pretty', 1549),
 ('last', 1543),
 ('since', 1519),
 ('different', 1504),
 ('although', 1501),
 ('gets', 1490),
 ('true', 1487),
 ('interesting', 1481),
 ('job', 1470),
 ('enough', 1455),
 ('our', 1454),
 ('shows', 1447),
 ('horror', 1441),
 ('woman', 1439),
 ('tv', 1400),
 ('probably', 1398),
 ('father', 1395),
 ('original', 1393),
 ('girl', 1390),
 ('point', 1379),
 ('plays', 1378),
 ('wonderful', 1372),
 ('far', 1358),
 ('course', 1358),
 ('john', 1350),
 ('rather', 1340),
 ('isn', 1328),
 ('ll', 1326),
 ('later', 1324),
 ('dvd', 1324),
 ('whole', 1310),
 ('war', 1310),
 ('d', 1307),
 ('found', 1306),
 ('away', 1306),
 ('screen', 1305),
 ('nothing', 1300),
 ('year', 1297),
 ('once', 1296),
 ('hard', 1294),
 ('together', 1280),
 ('set', 1277),
 ('am', 1277),
 ('having', 1266),
 ('making', 1265),
 ('place', 1263),
 ('might', 1260),
 ('comes', 1260),
 ('sure', 1253),
 ('american', 1248),
 ('play', 1245),
 ('kind', 1244),
 ('perfect', 1242),
 ('takes', 1242),
 ('performances', 1237),
 ('himself', 1230),
 ('worth', 1221),
 ('everyone', 1221),
 ('anyone', 1214),
 ('actor', 1203),
 ('three', 1201),
 ('wife', 1196),
 ('classic', 1192),
 ('goes', 1186),
 ('ending', 1178),
 ('version', 1168),
 ('star', 1149),
 ('enjoy', 1146),
 ('book', 1142),
 ('nice', 1132),
 ('everything', 1128),
 ('during', 1124),
 ('put', 1118),
 ('seeing', 1111),
 ('least', 1102),
 ('house', 1100),
 ('high', 1095),
 ('watched', 1094),
 ('loved', 1087),
 ('men', 1087),
 ('night', 1082),
 ('anything', 1075),
 ('believe', 1071),
 ('guy', 1071),
 ('top', 1063),
 ('amazing', 1058),
 ('hollywood', 1056),
 ('looking', 1053),
 ('main', 1044),
 ('definitely', 1043),
 ('gives', 1031),
 ('home', 1029),
 ('seem', 1028),
 ('episode', 1023),
 ('audience', 1020),
 ('sense', 1020),
 ('truly', 1017),
 ('special', 1011),
 ('second', 1009),
 ('short', 1009),
 ('fan', 1009),
 ('mind', 1005),
 ('human', 1001),
 ('recommend', 999),
 ('full', 996),
 ('black', 995),
 ('help', 991),
 ('along', 989),
 ('trying', 987),
 ('small', 986),
 ('death', 985),
 ('friends', 981),
 ('remember', 974),
 ('often', 970),
 ('said', 966),
 ('favorite', 962),
 ('heart', 959),
 ('early', 957),
 ('left', 956),
 ('until', 955),
 ('script', 954),
 ('let', 954),
 ('maybe', 937),
 ('today', 936),
 ('live', 934),
 ('less', 934),
 ('moments', 933),
 ('others', 929),
 ('brilliant', 926),
 ('shot', 925),
 ('liked', 923),
 ('become', 916),
 ('won', 915),
 ('used', 910),
 ('style', 907),
 ('mother', 895),
 ('lives', 894),
 ('came', 893),
 ('stars', 890),
 ('cinema', 889),
 ('looks', 885),
 ('perhaps', 884),
 ('read', 882),
 ('enjoyed', 879),
 ('boy', 875),
 ('drama', 873),
 ('highly', 871),
 ('given', 870),
 ('playing', 867),
 ('use', 864),
 ('next', 859),
 ('women', 858),
 ('fine', 857),
 ('effects', 856),
 ('kids', 854),
 ('entertaining', 853),
 ('need', 852),
 ('line', 850),
 ('works', 848),
 ('someone', 847),
 ('mr', 836),
 ('simply', 835),
 ('picture', 833),
 ('children', 833),
 ('face', 831),
 ('keep', 831),
 ('friend', 831),
 ('dark', 830),
 ('overall', 828),
 ('certainly', 828),
 ('minutes', 827),
 ('wasn', 824),
 ('history', 822),
 ('finally', 820),
 ('couple', 816),
 ('against', 815),
 ('son', 809),
 ('understand', 808),
 ('lost', 807),
 ('michael', 805),
 ('else', 801),
 ('throughout', 798),
 ('fans', 797),
 ('city', 792),
 ('reason', 789),
 ('written', 787),
 ('production', 787),
 ('several', 784),
 ('school', 783),
 ('based', 781),
 ('rest', 781),
 ('try', 780),
 ('dead', 776),
 ('hope', 775),
 ('strong', 768),
 ('white', 765),
 ('tell', 759),
 ('itself', 758),
 ('half', 753),
 ('person', 749),
 ('sometimes', 746),
 ('past', 744),
 ('start', 744),
 ('genre', 743),
 ('beginning', 739),
 ('final', 739),
 ('town', 738),
 ('art', 734),
 ('humor', 732),
 ('game', 732),
 ('yes', 731),
 ('idea', 731),
 ('late', 730),
 ('becomes', 729),
 ('despite', 729),
 ('able', 726),
 ('case', 726),
 ('money', 723),
 ('child', 721),
 ('completely', 721),
 ('side', 719),
 ('camera', 716),
 ('getting', 714),
 ('instead', 712),
 ('soon', 702),
 ('under', 700),
 ('viewer', 699),
 ('age', 697),
 ('days', 696),
 ('stories', 696),
 ('felt', 694),
 ('simple', 694),
 ('roles', 693),
 ('video', 688),
 ('name', 683),
 ('either', 683),
 ('doing', 677),
 ('turns', 674),
 ('wants', 671),
 ('close', 671),
 ('title', 669),
 ('wrong', 668),
 ('went', 666),
 ('james', 665),
 ('evil', 659),
 ('budget', 657),
 ('episodes', 657),
 ('relationship', 655),
 ('fantastic', 653),
 ('piece', 653),
 ('david', 651),
 ('turn', 648),
 ('murder', 646),
 ('parts', 645),
 ('brother', 644),
 ('absolutely', 643),
 ('head', 643),
 ('experience', 642),
 ('eyes', 641),
 ('sex', 638),
 ('direction', 637),
 ('called', 637),
 ('directed', 636),
 ('lines', 634),
 ('behind', 633),
 ('sort', 632),
 ('actress', 631),
 ('lead', 630),
 ('oscar', 628),
 ('including', 627),
 ('example', 627),
 ('known', 625),
 ('musical', 625),
 ('chance', 621),
 ('score', 620),
 ('already', 619),
 ('feeling', 619),
 ('hit', 619),
 ('voice', 615),
 ('moment', 612),
 ('living', 612),
 ('low', 610),
 ('supporting', 610),
 ('ago', 609),
 ('themselves', 608),
 ('reality', 605),
 ('hilarious', 605),
 ('jack', 604),
 ('told', 603),
 ('hand', 601),
 ('quality', 600),
 ('moving', 600),
 ('dialogue', 600),
 ('song', 599),
 ('happy', 599),
 ('matter', 598),
 ('paul', 598),
 ('light', 594),
 ('future', 593),
 ('entire', 592),
 ('finds', 591),
 ('gave', 589),
 ('laugh', 587),
 ('released', 586),
 ('expect', 584),
 ('fight', 581),
 ('particularly', 580),
 ('cinematography', 579),
 ('police', 579),
 ('whose', 578),
 ('type', 578),
 ('sound', 578),
 ('view', 573),
 ('enjoyable', 573),
 ('number', 572),
 ('romantic', 572),
 ('husband', 572),
 ('daughter', 572),
 ('documentary', 571),
 ('self', 570),
 ('superb', 569),
 ('modern', 569),
 ('took', 569),
 ('robert', 569),
 ('mean', 566),
 ('shown', 563),
 ('coming', 561),
 ('important', 560),
 ('king', 559),
 ('leave', 559),
 ('change', 558),
 ('somewhat', 555),
 ('wanted', 555),
 ('tells', 554),
 ('events', 552),
 ('run', 552),
 ('career', 552),
 ('country', 552),
 ('heard', 550),
 ('season', 550),
 ('greatest', 549),
 ('girls', 549),
 ('etc', 547),
 ('care', 546),
 ('starts', 545),
 ('english', 542),
 ('killer', 541),
 ('tale', 540),
 ('guys', 540),
 ('totally', 540),
 ('animation', 540),
 ('usual', 539),
 ('miss', 535),
 ('opinion', 535),
 ('easy', 531),
 ('violence', 531),
 ('songs', 530),
 ('british', 528),
 ('says', 526),
 ('realistic', 525),
 ('writing', 524),
 ('writer', 522),
 ('act', 522),
 ('comic', 521),
 ('thriller', 519),
 ('television', 517),
 ('power', 516),
 ('ones', 515),
 ('kid', 514),
 ('york', 513),
 ('novel', 513),
 ('alone', 512),
 ('problem', 512),
 ('attention', 509),
 ('involved', 508),
 ('kill', 507),
 ('extremely', 507),
 ('seemed', 506),
 ('hero', 505),
 ('french', 505),
 ('rock', 504),
 ('stuff', 501),
 ('wish', 499),
 ('begins', 498),
 ('taken', 497),
 ('sad', 497),
 ('ways', 496),
 ('richard', 495),
 ('knows', 494),
 ('atmosphere', 493),
 ('similar', 491),
 ('surprised', 491),
 ('taking', 491),
 ('car', 491),
 ('george', 490),
 ('perfectly', 490),
 ('across', 489),
 ('team', 489),
 ('eye', 489),
 ('sequence', 489),
 ('room', 488),
 ('due', 488),
 ('among', 488),
 ('serious', 488),
 ('powerful', 488),
 ('strange', 487),
 ('order', 487),
 ('cannot', 487),
 ('b', 487),
 ('beauty', 486),
 ('famous', 485),
 ('happened', 484),
 ('tries', 484),
 ('herself', 484),
 ('myself', 484),
 ('class', 483),
 ('four', 482),
 ('cool', 481),
 ('release', 479),
 ('anyway', 479),
 ('theme', 479),
 ('opening', 478),
 ('entertainment', 477),
 ('slow', 475),
 ('ends', 475),
 ('unique', 475),
 ('exactly', 475),
 ('easily', 474),
 ('level', 474),
 ('o', 474),
 ('red', 474),
 ('interest', 472),
 ('happen', 471),
 ('crime', 470),
 ('viewing', 468),
 ('sets', 467),
 ('memorable', 467),
 ('stop', 466),
 ('group', 466),
 ('problems', 463),
 ('dance', 463),
 ('working', 463),
 ('sister', 463),
 ('message', 463),
 ('knew', 462),
 ('mystery', 461),
 ('nature', 461),
 ('bring', 460),
 ('believable', 459),
 ('thinking', 459),
 ('brought', 459),
 ('mostly', 458),
 ('disney', 457),
 ('couldn', 457),
 ('society', 456),
 ('lady', 455),
 ('within', 455),
 ('blood', 454),
 ('parents', 453),
 ('upon', 453),
 ('viewers', 453),
 ('meets', 452),
 ('form', 452),
 ('peter', 452),
 ('tom', 452),
 ('usually', 452),
 ('soundtrack', 452),
 ('local', 450),
 ('certain', 448),
 ('follow', 448),
 ('whether', 447),
 ('possible', 446),
 ('emotional', 445),
 ('killed', 444),
 ('above', 444),
 ('de', 444),
 ('god', 443),
 ('middle', 443),
 ('needs', 442),
 ('happens', 442),
 ('flick', 442),
 ('masterpiece', 441),
 ('period', 440),
 ('major', 440),
 ('named', 439),
 ('haven', 439),
 ('particular', 438),
 ('th', 438),
 ('earth', 437),
 ('feature', 437),
 ('stand', 436),
 ('words', 435),
 ('typical', 435),
 ('elements', 433),
 ('obviously', 433),
 ('romance', 431),
 ('jane', 430),
 ('yourself', 427),
 ('showing', 427),
 ('brings', 426),
 ('fantasy', 426),
 ('guess', 423),
 ('america', 423),
 ('unfortunately', 422),
 ('huge', 422),
 ('indeed', 421),
 ('running', 421),
 ('talent', 420),
 ('stage', 419),
 ('started', 418),
 ('leads', 417),
 ('sweet', 417),
 ('japanese', 417),
 ('poor', 416),
 ('deal', 416),
 ('incredible', 413),
 ('personal', 413),
 ('fast', 412),
 ('became', 410),
 ('deep', 410),
 ('hours', 409),
 ('giving', 408),
 ('nearly', 408),
 ('dream', 408),
 ('clearly', 407),
 ('turned', 407),
 ('obvious', 406),
 ('near', 406),
 ('cut', 405),
 ('surprise', 405),
 ('era', 404),
 ('body', 404),
 ('hour', 403),
 ('female', 403),
 ('five', 403),
 ('note', 399),
 ('learn', 398),
 ('truth', 398),
 ('except', 397),
 ('feels', 397),
 ('match', 397),
 ('tony', 397),
 ('filmed', 394),
 ('clear', 394),
 ('complete', 394),
 ('street', 393),
 ('eventually', 393),
 ('keeps', 393),
 ('older', 393),
 ('lots', 393),
 ('buy', 392),
 ('william', 391),
 ('stewart', 391),
 ('fall', 390),
 ('joe', 390),
 ('meet', 390),
 ('unlike', 389),
 ('talking', 389),
 ('shots', 389),
 ('rating', 389),
 ('difficult', 389),
 ('dramatic', 388),
 ('means', 388),
 ('situation', 386),
 ('wonder', 386),
 ('present', 386),
 ('appears', 386),
 ('subject', 386),
 ('comments', 385),
 ('general', 383),
 ('sequences', 383),
 ('lee', 383),
 ('points', 382),
 ('earlier', 382),
 ('gone', 379),
 ('check', 379),
 ('suspense', 378),
 ('recommended', 378),
 ('ten', 378),
 ('third', 377),
 ('business', 377),
 ('talk', 375),
 ('leaves', 375),
 ('beyond', 375),
 ('portrayal', 374),
 ('beautifully', 373),
 ('single', 372),
 ('bill', 372),
 ('plenty', 371),
 ('word', 371),
 ('whom', 370),
 ('falls', 370),
 ('scary', 369),
 ('non', 369),
 ('figure', 369),
 ('battle', 369),
 ('using', 368),
 ('return', 368),
 ('doubt', 367),
 ('add', 367),
 ('hear', 366),
 ('solid', 366),
 ('success', 366),
 ('jokes', 365),
 ('oh', 365),
 ('touching', 365),
 ('political', 365),
 ('hell', 364),
 ('awesome', 364),
 ('boys', 364),
 ('sexual', 362),
 ('recently', 362),
 ('dog', 362),
 ('please', 361),
 ('wouldn', 361),
 ('straight', 361),
 ('features', 361),
 ('forget', 360),
 ('setting', 360),
 ('lack', 360),
 ('married', 359),
 ('mark', 359),
 ('social', 357),
 ('interested', 356),
 ('adventure', 356),
 ('actual', 355),
 ('terrific', 355),
 ('sees', 355),
 ('brothers', 355),
 ('move', 354),
 ('call', 354),
 ('various', 353),
 ('theater', 353),
 ('dr', 353),
 ('animated', 352),
 ('western', 351),
 ('baby', 350),
 ('space', 350),
 ('leading', 348),
 ('disappointed', 348),
 ('portrayed', 346),
 ('aren', 346),
 ('screenplay', 345),
 ('smith', 345),
 ('towards', 344),
 ('hate', 344),
 ('noir', 343),
 ('outstanding', 342),
 ('decent', 342),
 ('kelly', 342),
 ('directors', 341),
 ('journey', 341),
 ('none', 340),
 ('looked', 340),
 ('effective', 340),
 ('storyline', 339),
 ('caught', 339),
 ('sci', 339),
 ('fi', 339),
 ('cold', 339),
 ('mary', 339),
 ('rich', 338),
 ('charming', 338),
 ('popular', 337),
 ('rare', 337),
 ('manages', 337),
 ('harry', 337),
 ('spirit', 336),
 ('appreciate', 335),
 ('open', 335),
 ('moves', 334),
 ('basically', 334),
 ('acted', 334),
 ('inside', 333),
 ('boring', 333),
 ('century', 333),
 ('mention', 333),
 ('deserves', 333),
 ('subtle', 333),
 ('pace', 333),
 ('familiar', 332),
 ('background', 332),
 ('ben', 331),
 ('creepy', 330),
 ('supposed', 330),
 ('secret', 329),
 ('die', 328),
 ('jim', 328),
 ('question', 327),
 ('effect', 327),
 ('natural', 327),
 ('impressive', 326),
 ('rate', 326),
 ('language', 326),
 ('saying', 325),
 ('intelligent', 325),
 ('telling', 324),
 ('realize', 324),
 ('material', 324),
 ('scott', 324),
 ('singing', 323),
 ('dancing', 322),
 ('visual', 321),
 ('adult', 321),
 ('imagine', 321),
 ('kept', 320),
 ('office', 320),
 ('uses', 319),
 ('pure', 318),
 ('wait', 318),
 ('stunning', 318),
 ('review', 317),
 ('previous', 317),
 ('copy', 317),
 ('seriously', 317),
 ('reading', 316),
 ('create', 316),
 ('hot', 316),
 ('created', 316),
 ('magic', 316),
 ('somehow', 316),
 ('stay', 315),
 ('attempt', 315),
 ('escape', 315),
 ('crazy', 315),
 ('air', 315),
 ('frank', 315),
 ('hands', 314),
 ('filled', 313),
 ('expected', 312),
 ('average', 312),
 ('surprisingly', 312),
 ('complex', 311),
 ('quickly', 310),
 ('successful', 310),
 ('studio', 310),
 ('plus', 309),
 ('male', 309),
 ('co', 307),
 ('images', 306),
 ('casting', 306),
 ('following', 306),
 ('minute', 306),
 ('exciting', 306),
 ('members', 305),
 ('follows', 305),
 ('themes', 305),
 ('german', 305),
 ('reasons', 305),
 ('e', 305),
 ('touch', 304),
 ('edge', 304),
 ('free', 304),
 ('cute', 304),
 ('genius', 304),
 ('outside', 303),
 ('reviews', 302),
 ('admit', 302),
 ('ok', 302),
 ('younger', 302),
 ('fighting', 301),
 ('odd', 301),
 ('master', 301),
 ('recent', 300),
 ('thanks', 300),
 ('break', 300),
 ('comment', 300),
 ('apart', 299),
 ('emotions', 298),
 ('lovely', 298),
 ('begin', 298),
 ('doctor', 297),
 ('party', 297),
 ('italian', 297),
 ('la', 296),
 ('missed', 296),
 ...]

In [11]:
pos_neg_ratios = Counter()

for term,cnt in list(total_counts.most_common()):
    if(cnt > 100):
        pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
        pos_neg_ratios[term] = pos_neg_ratio

for word,ratio in pos_neg_ratios.most_common():
    if(ratio > 1):
        pos_neg_ratios[word] = np.log(ratio)
    else:
        pos_neg_ratios[word] = -np.log((1 / (ratio+0.01)))

In [12]:
# words most frequently seen in a review with a "POSITIVE" label
pos_neg_ratios.most_common()


Out[12]:
[('edie', 4.6913478822291435),
 ('paulie', 4.0775374439057197),
 ('felix', 3.1527360223636558),
 ('polanski', 2.8233610476132043),
 ('matthau', 2.8067217286092401),
 ('victoria', 2.6810215287142909),
 ('mildred', 2.6026896854443837),
 ('gandhi', 2.5389738710582761),
 ('flawless', 2.451005098112319),
 ('superbly', 2.2600254785752498),
 ('perfection', 2.1594842493533721),
 ('astaire', 2.1400661634962708),
 ('captures', 2.0386195471595809),
 ('voight', 2.0301704926730531),
 ('wonderfully', 2.0218960560332353),
 ('powell', 1.9783454248084671),
 ('brosnan', 1.9547990964725592),
 ('lily', 1.9203768470501485),
 ('bakshi', 1.9029851043382795),
 ('lincoln', 1.9014583864844796),
 ('refreshing', 1.8551812956655511),
 ('breathtaking', 1.8481124057791867),
 ('bourne', 1.8478489358790986),
 ('lemmon', 1.8458266904983307),
 ('delightful', 1.8002701588959635),
 ('flynn', 1.7996646487351682),
 ('andrews', 1.7764919970972666),
 ('homer', 1.7692866133759964),
 ('beautifully', 1.7626953362841438),
 ('soccer', 1.7578579175523736),
 ('elvira', 1.7397031072720019),
 ('underrated', 1.7197859696029656),
 ('gripping', 1.7165360479904674),
 ('superb', 1.7091514458966952),
 ('delight', 1.6714733033535532),
 ('welles', 1.6677068205580761),
 ('sadness', 1.663505133704376),
 ('sinatra', 1.6389967146756448),
 ('touching', 1.637217476541176),
 ('timeless', 1.62924053973028),
 ('macy', 1.6211339521972916),
 ('unforgettable', 1.6177367152487956),
 ('favorites', 1.6158688027643908),
 ('stewart', 1.6119987332957739),
 ('sullivan', 1.6094379124341003),
 ('extraordinary', 1.6094379124341003),
 ('hartley', 1.6094379124341003),
 ('brilliantly', 1.5950491749820008),
 ('friendship', 1.5677652160335325),
 ('wonderful', 1.5645425925262093),
 ('palma', 1.5553706911638245),
 ('magnificent', 1.54663701119507),
 ('finest', 1.5462590108125689),
 ('jackie', 1.5439233053234738),
 ('ritter', 1.5404450409471491),
 ('tremendous', 1.5184661342283736),
 ('freedom', 1.5091151908062312),
 ('fantastic', 1.5048433868558566),
 ('terrific', 1.5026699370083942),
 ('noir', 1.493925025312256),
 ('sidney', 1.493925025312256),
 ('outstanding', 1.4910053152089213),
 ('pleasantly', 1.4894785973551214),
 ('mann', 1.4894785973551214),
 ('nancy', 1.488077055429833),
 ('marie', 1.4825711915553104),
 ('marvelous', 1.4739999415389962),
 ('excellent', 1.4647538505723599),
 ('ruth', 1.4596256342054401),
 ('stanwyck', 1.4412101187160054),
 ('widmark', 1.4350845252893227),
 ('splendid', 1.4271163556401458),
 ('chan', 1.423108334242607),
 ('exceptional', 1.4201959127955721),
 ('tender', 1.410986973710262),
 ('gentle', 1.4078005663408544),
 ('poignant', 1.4022947024663317),
 ('gem', 1.3932148039644643),
 ('amazing', 1.3919815802404802),
 ('chilling', 1.3862943611198906),
 ('fisher', 1.3862943611198906),
 ('davies', 1.3862943611198906),
 ('captivating', 1.3862943611198906),
 ('darker', 1.3652409519220583),
 ('april', 1.3499267169490159),
 ('kelly', 1.3461743673304654),
 ('blake', 1.3418425985490567),
 ('overlooked', 1.329135947279942),
 ('ralph', 1.32818673031261),
 ('bette', 1.3156767939059373),
 ('hoffman', 1.3150668518315229),
 ('cole', 1.3121863889661687),
 ('shines', 1.3049487216659381),
 ('powerful', 1.2999662776313934),
 ('notch', 1.2950456896547455),
 ('remarkable', 1.2883688239495823),
 ('pitt', 1.286210902562908),
 ('winters', 1.2833463918674481),
 ('vivid', 1.2762934659055623),
 ('gritty', 1.2757524867200667),
 ('giallo', 1.2745029551317739),
 ('portrait', 1.2704625455947689),
 ('innocence', 1.2694300209805796),
 ('psychiatrist', 1.2685113254635072),
 ('favorite', 1.2668956297860055),
 ('ensemble', 1.2656663733312759),
 ('stunning', 1.2622417124499117),
 ('burns', 1.259880436264232),
 ('garbo', 1.258954938743289),
 ('barbara', 1.2580400255962119),
 ('philip', 1.2527629684953681),
 ('panic', 1.2527629684953681),
 ('holly', 1.2527629684953681),
 ('carol', 1.2481440226390734),
 ('perfect', 1.246742480713785),
 ('appreciated', 1.2462482874741743),
 ('favourite', 1.2411123512753928),
 ('journey', 1.2367626271489269),
 ('rural', 1.235471471385307),
 ('bond', 1.2321436812926323),
 ('builds', 1.2305398317106577),
 ('brilliant', 1.2287554137664785),
 ('brooklyn', 1.2286654169163074),
 ('von', 1.225175011976539),
 ('recommended', 1.2163953243244932),
 ('unfolds', 1.2163953243244932),
 ('daniel', 1.20215296760895),
 ('perfectly', 1.1971931173405572),
 ('crafted', 1.1962507582320256),
 ('prince', 1.1939224684724346),
 ('troubled', 1.192138346678933),
 ('consequences', 1.1865810616140668),
 ('haunting', 1.1814999484738773),
 ('cinderella', 1.180052620608284),
 ('alexander', 1.1759989522835299),
 ('emotions', 1.1753049094563641),
 ('boxing', 1.1735135968412274),
 ('subtle', 1.1734135017508081),
 ('curtis', 1.1649873576129823),
 ('rare', 1.1566438362402944),
 ('loved', 1.1563661500586044),
 ('daughters', 1.1526795099383853),
 ('courage', 1.1438688802562305),
 ('dentist', 1.1426722784621401),
 ('highly', 1.1420208631618658),
 ('nominated', 1.1409146683587992),
 ('tony', 1.1397491942285991),
 ('draws', 1.1325138403437911),
 ('everyday', 1.1306150197542835),
 ('contrast', 1.1284652518177909),
 ('cried', 1.1213405397456659),
 ('fabulous', 1.1210851445201684),
 ('ned', 1.120591195386885),
 ('fay', 1.120591195386885),
 ('emma', 1.1184149159642893),
 ('sensitive', 1.113318436057805),
 ('smooth', 1.1089750757036563),
 ('dramas', 1.1080910326226534),
 ('today', 1.1050431789984001),
 ('helps', 1.1023091505494358),
 ('inspiring', 1.0986122886681098),
 ('jimmy', 1.0937696641923216),
 ('awesome', 1.0931328229034842),
 ('unique', 1.0881409888008142),
 ('tragic', 1.0871835928444868),
 ('intense', 1.0870514662670339),
 ('stellar', 1.0857088838322018),
 ('rival', 1.0822184788924332),
 ('provides', 1.0797081340289569),
 ('depression', 1.0782034170369026),
 ('shy', 1.0775588794702773),
 ('carrie', 1.076139432816051),
 ('blend', 1.0753554265038423),
 ('hank', 1.0736109864626924),
 ('diana', 1.0726368022648489),
 ('adorable', 1.0726368022648489),
 ('unexpected', 1.0722255334949147),
 ('achievement', 1.0668635903535293),
 ('bettie', 1.0663514264498881),
 ('happiness', 1.0632729222228008),
 ('glorious', 1.0608719606852626),
 ('davis', 1.0541605260972757),
 ('terrifying', 1.0525211814678428),
 ('beauty', 1.050410186850232),
 ('ideal', 1.0479685558493548),
 ('fears', 1.0467872208035236),
 ('hong', 1.0438040521731147),
 ('seasons', 1.0433496099930604),
 ('fascinating', 1.0414538748281612),
 ('carries', 1.0345904299031787),
 ('satisfying', 1.0321225473992768),
 ('definite', 1.0319209141694374),
 ('touched', 1.0296194171811581),
 ('greatest', 1.0248947127715422),
 ('creates', 1.0241097613701886),
 ('aunt', 1.023388867430522),
 ('walter', 1.022328983918479),
 ('spectacular', 1.0198314108149955),
 ('portrayal', 1.0189810189761024),
 ('ann', 1.0127808528183286),
 ('enterprise', 1.0116009116784799),
 ('musicals', 1.0096648026516135),
 ('deeply', 1.0094845087721023),
 ('incredible', 1.0061677561461084),
 ('mature', 1.0060195018402847),
 ('triumph', 0.99682959435816731),
 ('margaret', 0.99682959435816731),
 ('navy', 0.99493385919326827),
 ('harry', 0.99176919305006062),
 ('lucas', 0.990398704027877),
 ('sweet', 0.98966110487955483),
 ('joey', 0.98794672078059009),
 ('oscar', 0.98721905111049713),
 ('balance', 0.98649499054740353),
 ('warm', 0.98485340331145166),
 ('ages', 0.98449898190068863),
 ('guilt', 0.98082925301172619),
 ('glover', 0.98082925301172619),
 ('carrey', 0.98082925301172619),
 ('learns', 0.97881108885548895),
 ('unusual', 0.97788374278196932),
 ('sons', 0.97777581552483595),
 ('complex', 0.97761897738147796),
 ('essence', 0.97753435711487369),
 ('brazil', 0.9769153536905899),
 ('widow', 0.97650959186720987),
 ('solid', 0.97537964824416146),
 ('beautiful', 0.97326301262841053),
 ('holmes', 0.97246100334120955),
 ('awe', 0.97186058302896583),
 ('vhs', 0.97116734209998934),
 ('eerie', 0.97116734209998934),
 ('lonely', 0.96873720724669754),
 ('grim', 0.96873720724669754),
 ('sport', 0.96825047080486615),
 ('debut', 0.96508089604358704),
 ('destiny', 0.96343751029985703),
 ('thrillers', 0.96281074750904794),
 ('tears', 0.95977584381389391),
 ('rose', 0.95664202739772253),
 ('feelings', 0.95551144502743635),
 ('ginger', 0.95551144502743635),
 ('winning', 0.95471810900804055),
 ('stanley', 0.95387344302319799),
 ('cox', 0.95343027882361187),
 ('paris', 0.95278479030472663),
 ('heart', 0.95238806924516806),
 ('hooked', 0.95155887071161305),
 ('comfortable', 0.94803943018873538),
 ('mgm', 0.94446160884085151),
 ('masterpiece', 0.94155039863339296),
 ('themes', 0.94118828349588235),
 ('danny', 0.93967118051821874),
 ('anime', 0.93378388932167222),
 ('perry', 0.93328830824272613),
 ('joy', 0.93301752567946861),
 ('lovable', 0.93081883243706487),
 ('mysteries', 0.92953595862417571),
 ('hal', 0.92953595862417571),
 ('louis', 0.92871325187271225),
 ('charming', 0.92520609553210742),
 ('urban', 0.92367083917177761),
 ('allows', 0.92183091224977043),
 ('impact', 0.91815814604895041),
 ('italy', 0.91629073187415511),
 ('gradually', 0.91629073187415511),
 ('lifestyle', 0.91629073187415511),
 ('spy', 0.91289514287301687),
 ('treat', 0.91193342650519937),
 ('subsequent', 0.91056005716517008),
 ('kennedy', 0.90981821736853763),
 ('loving', 0.90967549275543591),
 ('surprising', 0.90937028902958128),
 ('quiet', 0.90648673177753425),
 ('winter', 0.90624039602065365),
 ('reveals', 0.90490540964902977),
 ('raw', 0.90445627422715225),
 ('funniest', 0.90078654533818991),
 ('pleased', 0.89994159387262562),
 ('norman', 0.89994159387262562),
 ('thief', 0.89874642222324552),
 ('season', 0.89827222637147675),
 ('secrets', 0.89794159320595857),
 ('colorful', 0.89705936994626756),
 ('highest', 0.8967461358011849),
 ('compelling', 0.89462923509297576),
 ('danes', 0.89248008318043659),
 ('castle', 0.88967708335606499),
 ('kudos', 0.88889175768604067),
 ('great', 0.88810470901464589),
 ('baseball', 0.88730319500090271),
 ('subtitles', 0.88730319500090271),
 ('bleak', 0.88730319500090271),
 ('winner', 0.88643776872447388),
 ('tragedy', 0.88563699078315261),
 ('todd', 0.88551907320740142),
 ('nicely', 0.87924946019380601),
 ('arthur', 0.87546873735389985),
 ('essential', 0.87373111745535925),
 ('gorgeous', 0.8731725250935497),
 ('fonda', 0.87294029100054127),
 ('eastwood', 0.87139541196626402),
 ('focuses', 0.87082835779739776),
 ('enjoyed', 0.87070195951624607),
 ('natural', 0.86997924506912838),
 ('intensity', 0.86835126958503595),
 ('witty', 0.86824103423244681),
 ('rob', 0.8642954367557748),
 ('worlds', 0.86377269759070874),
 ('health', 0.86113891179907498),
 ('magical', 0.85953791528170564),
 ('deeper', 0.85802182375017932),
 ('lucy', 0.85618680780444956),
 ('moving', 0.85566611005772031),
 ('lovely', 0.85290640004681306),
 ('purple', 0.8513711857748395),
 ('memorable', 0.84801189112086062),
 ('sings', 0.84729786038720367),
 ('craig', 0.84342938360928321),
 ('modesty', 0.84342938360928321),
 ('relate', 0.84326559685926517),
 ('episodes', 0.84223712084137292),
 ('strong', 0.84167135777060931),
 ('smith', 0.83959811108590054),
 ('tear', 0.83704136022001441),
 ('apartment', 0.83333115290549531),
 ('princess', 0.83290912293510388),
 ('disagree', 0.83290912293510388),
 ('kung', 0.83173334384609199),
 ('adventure', 0.83150561393278388),
 ('columbo', 0.82667857318446791),
 ('jake', 0.82667857318446791),
 ('adds', 0.82485652591452319),
 ('hart', 0.82472353834866463),
 ('strength', 0.82417544296634937),
 ('realizes', 0.82360006895738058),
 ('dave', 0.8232003088081431),
 ('childhood', 0.82208086393583857),
 ('forbidden', 0.81989888619908913),
 ('tight', 0.81883539572344199),
 ('surreal', 0.8178506590609026),
 ('manager', 0.81770990320170756),
 ('dancer', 0.81574950265227764),
 ('studios', 0.81093021621632877),
 ('con', 0.81093021621632877),
 ('miike', 0.80821651034473263),
 ('realistic', 0.80807714723392232),
 ('explicit', 0.80792269515237358),
 ('kurt', 0.8060875917405409),
 ('traditional', 0.80535917116687328),
 ('deals', 0.80535917116687328),
 ('holds', 0.80493858654806194),
 ('carl', 0.80437281567016972),
 ('touches', 0.80396154690023547),
 ('gene', 0.80314807577427383),
 ('albert', 0.8027669055771679),
 ('abc', 0.80234647252493729),
 ('cry', 0.80011930011211307),
 ('sides', 0.7995275841185171),
 ('develops', 0.79850769621777162),
 ('eyre', 0.79850769621777162),
 ('dances', 0.79694397424158891),
 ('oscars', 0.79633141679517616),
 ('legendary', 0.79600456599965308),
 ('hearted', 0.79492987486988764),
 ('importance', 0.79492987486988764),
 ('portraying', 0.79356592830699269),
 ('impressed', 0.79258107754813223),
 ('waters', 0.79112758892014912),
 ('empire', 0.79078565012386137),
 ('edge', 0.789774016249017),
 ('jean', 0.78845736036427028),
 ('environment', 0.78845736036427028),
 ('sentimental', 0.7864791203521645),
 ('captured', 0.78623760362595729),
 ('styles', 0.78592891401091158),
 ('daring', 0.78592891401091158),
 ('frank', 0.78275933924963248),
 ('tense', 0.78275933924963248),
 ('backgrounds', 0.78275933924963248),
 ('matches', 0.78275933924963248),
 ('gothic', 0.78209466657644144),
 ('sharp', 0.7814397877056235),
 ('achieved', 0.78015855754957497),
 ('court', 0.77947526404844247),
 ('steals', 0.7789140023173704),
 ('rules', 0.77844476107184035),
 ('colors', 0.77684619943659217),
 ('reunion', 0.77318988823348167),
 ('covers', 0.77139937745969345),
 ('tale', 0.77010822169607374),
 ('rain', 0.7683706017975328),
 ('denzel', 0.76804848873306297),
 ('stays', 0.76787072675588186),
 ('blob', 0.76725515271366718),
 ('maria', 0.76214005204689672),
 ('conventional', 0.76214005204689672),
 ('fresh', 0.76158434211317383),
 ('midnight', 0.76096977689870637),
 ('landscape', 0.75852993982279704),
 ('animated', 0.75768570169751648),
 ('titanic', 0.75666058628227129),
 ('sunday', 0.75666058628227129),
 ('spring', 0.7537718023763802),
 ('cagney', 0.7537718023763802),
 ('enjoyable', 0.75246375771636476),
 ('immensely', 0.75198768058287868),
 ('sir', 0.7507762933965817),
 ('nevertheless', 0.75067102469813185),
 ('driven', 0.74994477895307854),
 ('performances', 0.74883252516063137),
 ('memories', 0.74721440183022114),
 ('nowadays', 0.74721440183022114),
 ('simple', 0.74641420974143258),
 ('golden', 0.74533293373051557),
 ('leslie', 0.74533293373051557),
 ('lovers', 0.74497224842453125),
 ('relationship', 0.74484232345601786),
 ('supporting', 0.74357803418683721),
 ('che', 0.74262723782331497),
 ('packed', 0.7410032017375805),
 ('trek', 0.74021469141793106),
 ('provoking', 0.73840377214806618),
 ('strikes', 0.73759894313077912),
 ('depiction', 0.73682224406260699),
 ('emotional', 0.73678211645681524),
 ('secretary', 0.7366322924996842),
 ('influenced', 0.73511137965897755),
 ('florida', 0.73511137965897755),
 ('germany', 0.73288750920945944),
 ('brings', 0.73142936713096229),
 ('lewis', 0.73129894652432159),
 ('elderly', 0.73088750854279239),
 ('owner', 0.72743625403857748),
 ('streets', 0.72666987259858895),
 ('henry', 0.72642196944481741),
 ('portrays', 0.72593700338293632),
 ('bears', 0.7252354951114458),
 ('china', 0.72489587887452556),
 ('anger', 0.72439972406404984),
 ('society', 0.72433010799663333),
 ('available', 0.72415741730250549),
 ('best', 0.72347034060446314),
 ('bugs', 0.72270598280148979),
 ('magic', 0.71878961117328299),
 ('delivers', 0.71846498854423513),
 ('verhoeven', 0.71846498854423513),
 ('jim', 0.71783979315031676),
 ('donald', 0.71667767797013937),
 ('endearing', 0.71465338578090898),
 ('relationships', 0.71393795022901896),
 ('greatly', 0.71256526641704687),
 ('charlie', 0.71024161391924534),
 ('brad', 0.71024161391924534),
 ('simon', 0.70967648251115578),
 ('effectively', 0.70914752190638641),
 ('march', 0.70774597998109789),
 ('atmosphere', 0.70744773070214162),
 ('influence', 0.70733181555190172),
 ('genius', 0.706392407309966),
 ('emotionally', 0.70556970055850243),
 ('ken', 0.70526854109229009),
 ('identity', 0.70484322032313651),
 ('sophisticated', 0.70470800296102132),
 ('dan', 0.70457587638356811),
 ('andrew', 0.70329955202396321),
 ('india', 0.70144598337464037),
 ('roy', 0.69970458110610434),
 ('surprisingly', 0.6995780708902356),
 ('sky', 0.69780919366575667),
 ('romantic', 0.69664981111114743),
 ('match', 0.69566924999265523),
 ('meets', 0.69314718055994529),
 ('cowboy', 0.69314718055994529),
 ('wave', 0.69314718055994529),
 ('bitter', 0.69314718055994529),
 ('patient', 0.69314718055994529),
 ('stylish', 0.69314718055994529),
 ('britain', 0.69314718055994529),
 ('affected', 0.69314718055994529),
 ('beatty', 0.69314718055994529),
 ('love', 0.69198533541937324),
 ('paul', 0.68980827929443067),
 ('andy', 0.68846333124751902),
 ('performance', 0.68797386327972465),
 ('patrick', 0.68645819240914863),
 ('unlike', 0.68546468438792907),
 ('brooks', 0.68433655087779044),
 ('refuses', 0.68348526964820844),
 ('award', 0.6824518914431974),
 ('complaint', 0.6824518914431974),
 ('ride', 0.68229716453587952),
 ('dawson', 0.68171848473632257),
 ('luke', 0.68158635815886937),
 ('wells', 0.68087708796813096),
 ('france', 0.6804081547825156),
 ('sports', 0.68007509899259255),
 ('handsome', 0.68007509899259255),
 ('directs', 0.67875844310784572),
 ('rebel', 0.67875844310784572),
 ('greater', 0.67605274720064523),
 ('dreams', 0.67599410133369586),
 ('effective', 0.67565402311242806),
 ('interpretation', 0.67479804189174875),
 ('works', 0.67445504754779284),
 ('brando', 0.67445504754779284),
 ('noble', 0.6737290947028437),
 ('paced', 0.67314651385327573),
 ('le', 0.67067432470788668),
 ('master', 0.67015766233524654),
 ('h', 0.6696166831497512),
 ('rings', 0.66904962898088483),
 ('easy', 0.66895995494594152),
 ('city', 0.66820823221269321),
 ('sunshine', 0.66782937257565544),
 ('succeeds', 0.66647893347778397),
 ('relations', 0.664159643686693),
 ('england', 0.66387679825983203),
 ('glimpse', 0.66329421741026418),
 ('aired', 0.66268797307523675),
 ('sees', 0.66263163663399482),
 ('both', 0.66248336767382998),
 ('definitely', 0.66199789483898808),
 ('imaginative', 0.66139848224536502),
 ('appreciate', 0.66083893732728749),
 ('tricks', 0.66071190480679143),
 ('striking', 0.66071190480679143),
 ('carefully', 0.65999497324304479),
 ('complicated', 0.65981076029235353),
 ('perspective', 0.65962448852130173),
 ('trilogy', 0.65877953705573755),
 ('future', 0.65834665141052828),
 ('lion', 0.65742909795786608),
 ('douglas', 0.65540685257709819),
 ('victor', 0.65540685257709819),
 ('inspired', 0.65459851044271034),
 ('marriage', 0.65392646740666405),
 ('demands', 0.65392646740666405),
 ('father', 0.65172321672194655),
 ('page', 0.65123628494430852),
 ('instant', 0.65058756614114943),
 ('era', 0.6495567444850836),
 ('ruthless', 0.64934455790155243),
 ('saga', 0.64934455790155243),
 ('joan', 0.64891392558311978),
 ('joseph', 0.64841128671855386),
 ('workers', 0.64829661439459352),
 ('fantasy', 0.64726757480925168),
 ('distant', 0.64551913157069074),
 ('accomplished', 0.64551913157069074),
 ('manhattan', 0.64435701639051324),
 ('personal', 0.64355023942057321),
 ('meeting', 0.64313675998528386),
 ('individual', 0.64313675998528386),
 ('pushing', 0.64313675998528386),
 ('pleasant', 0.64250344774119039),
 ('brave', 0.64185388617239469),
 ('william', 0.64083139119578469),
 ('hudson', 0.64077919504262937),
 ('friendly', 0.63949446706762514),
 ('eccentric', 0.63907995928966954),
 ('awards', 0.63875310849414646),
 ('jack', 0.63838309514997038),
 ('seeking', 0.63808740337691783),
 ('divorce', 0.63757732940513456),
 ('colonel', 0.63757732940513456),
 ('jane', 0.63443957973316734),
 ('keeping', 0.63414883979798953),
 ('gives', 0.63383568159497883),
 ('ted', 0.63342794585832296),
 ('animation', 0.63208692379869902),
 ('progress', 0.6317782341836532),
 ('larger', 0.63127177684185776),
 ('concert', 0.63127177684185776),
 ('nation', 0.6296337748376194),
 ('albeit', 0.62739580299716491),
 ('adapted', 0.62613647027698516),
 ('discovers', 0.62542900650499444),
 ('classic', 0.62504956428050518),
 ('segment', 0.62335141862440335),
 ('morgan', 0.62303761437291871),
 ('mouse', 0.62294292188669675),
 ('impressive', 0.62211140744319349),
 ('artist', 0.62168821657780038),
 ('ultimate', 0.62168821657780038),
 ('griffith', 0.62117368093485603),
 ('drew', 0.62082651898031915),
 ('emily', 0.62082651898031915),
 ('moved', 0.6197197120051281),
 ('families', 0.61903920840622351),
 ('profound', 0.61903920840622351),
 ('innocent', 0.61851219917136446),
 ('versions', 0.61730910416844087),
 ('eddie', 0.61691981517206107),
 ('criticism', 0.61651395453902935),
 ('nature', 0.61594514653194088),
 ('recognized', 0.61518563909023349),
 ('sexuality', 0.61467556511845012),
 ('contract', 0.61400986000122149),
 ('brian', 0.61344043794920278),
 ('remembered', 0.6131044728864089),
 ('determined', 0.6123858239154869),
 ('offers', 0.61207935747116349),
 ('pleasure', 0.61195702582993206),
 ('washington', 0.61180154110599294),
 ('images', 0.61159731359583758),
 ('games', 0.61067095873570676),
 ('academy', 0.60872983874736208),
 ('fashioned', 0.60798937221963845),
 ('melodrama', 0.60749173598145145),
 ('rough', 0.60613580357031549),
 ('charismatic', 0.60613580357031549),
 ('peoples', 0.60613580357031549),
 ('dealing', 0.60517840761398811),
 ('fine', 0.60496962268013299),
 ('tap', 0.60391604683200273),
 ('trio', 0.60157998703445481),
 ('russell', 0.60120968523425966),
 ('figures', 0.60077386042893011),
 ('ward', 0.60005675749393339),
 ('shine', 0.59911823091166894),
 ('brady', 0.59911823091166894),
 ('job', 0.59845562125168661),
 ('satisfied', 0.59652034487087369),
 ('river', 0.59637962862495086),
 ('brown', 0.595773016534769),
 ('believable', 0.59566072133302495),
 ('always', 0.59470710774669278),
 ('bound', 0.59470710774669278),
 ('hall', 0.5933967777928858),
 ('cook', 0.5916777203950857),
 ('claire', 0.59136448625000293),
 ('broadway', 0.59033768669372433),
 ('anna', 0.58778666490211906),
 ('peace', 0.58628403501758408),
 ('visually', 0.58539431926349916),
 ('morality', 0.58525821854876026),
 ('falk', 0.58525821854876026),
 ('growing', 0.58466653756587539),
 ('experiences', 0.58314628534561685),
 ('stood', 0.58314628534561685),
 ('touch', 0.58122926435596001),
 ('lives', 0.5810976767513224),
 ('kubrick', 0.58066919713325493),
 ('timing', 0.58047401805583243),
 ('expressions', 0.57981849525294216),
 ('struggles', 0.57981849525294216),
 ('authentic', 0.57848427223980559),
 ('helen', 0.57763429343810091),
 ('pre', 0.57700753064729182),
 ('quirky', 0.5753641449035618),
 ('young', 0.57531672344534313),
 ('inner', 0.57454143815209846),
 ('mexico', 0.57443087372056334),
 ('clint', 0.57380042292737909),
 ('sisters', 0.57286101468544337),
 ('realism', 0.57226528899949558),
 ('french', 0.5720692490067093),
 ('personalities', 0.5720692490067093),
 ('surprises', 0.57113222999698177),
 ('adventures', 0.57113222999698177),
 ('overcome', 0.5697681593994407),
 ('timothy', 0.56953322459276867),
 ('tales', 0.56909453188996639),
 ('war', 0.56843317302781682),
 ('civil', 0.5679840376059393),
 ('countries', 0.56737779327091187),
 ('streep', 0.56710645966458029),
 ('tradition', 0.56685345523565323),
 ('oliver', 0.56673325570428668),
 ('australia', 0.56580775818334383),
 ('understanding', 0.56531380905006046),
 ('players', 0.56509525370004821),
 ('knowing', 0.56489284503626647),
 ('rogers', 0.56421349718405212),
 ('suspenseful', 0.56368911332305849),
 ('variety', 0.56368911332305849),
 ('true', 0.56281525180810066),
 ('jr', 0.56220982311246936),
 ('psychological', 0.56108745854687891),
 ('sent', 0.55961578793542266),
 ('grand', 0.55961578793542266),
 ('branagh', 0.55961578793542266),
 ('reminiscent', 0.55961578793542266),
 ('performing', 0.55961578793542266),
 ('wealth', 0.55961578793542266),
 ('overwhelming', 0.55961578793542266),
 ('odds', 0.55961578793542266),
 ('brothers', 0.55891181043362848),
 ('howard', 0.55811089675600245),
 ('david', 0.55693122256475369),
 ('generation', 0.55628799784274796),
 ('grow', 0.55612538299565417),
 ('survival', 0.55594605904646033),
 ('mainstream', 0.55574731115750231),
 ('dick', 0.55431073570572953),
 ('charm', 0.55288175575407861),
 ('kirk', 0.55278982286502287),
 ('twists', 0.55244729845681018),
 ('gangster', 0.55206858230003986),
 ('jeff', 0.55179306225421365),
 ('family', 0.55116244510065526),
 ('tend', 0.55053307336110335),
 ('thanks', 0.55049088015842218),
 ('world', 0.54744234723432639),
 ('sutherland', 0.54743536937855164),
 ('life', 0.54695514434959924),
 ('disc', 0.54654370636806993),
 ('bug', 0.54654370636806993),
 ('tribute', 0.5455111817538808),
 ('europe', 0.54522705048332309),
 ('sacrifice', 0.54430155296238014),
 ('color', 0.54405127139431109),
 ('superior', 0.54333490233128523),
 ('york', 0.54318235866536513),
 ('pulls', 0.54266622962164945),
 ('jackson', 0.54232429082536171),
 ('hearts', 0.54232429082536171),
 ('enjoy', 0.54124285135906114),
 ('redemption', 0.54056759296472823),
 ('madness', 0.540384426007535),
 ('stands', 0.5389965007326869),
 ('trial', 0.5389965007326869),
 ('greek', 0.5389965007326869),
 ('hamilton', 0.5389965007326869),
 ('each', 0.5388212312554177),
 ('faithful', 0.53773307668591508),
 ('received', 0.5372768098531604),
 ('documentaries', 0.53714293208336406),
 ('jealous', 0.53714293208336406),
 ('different', 0.53709860682460819),
 ('describes', 0.53680111016925136),
 ('shorts', 0.53596159703753288),
 ('brilliance', 0.53551823635636209),
 ('mountains', 0.53492317534505118),
 ('share', 0.53408248593025787),
 ('dealt', 0.53408248593025787),
 ('providing', 0.53329847961804933),
 ('explore', 0.53329847961804933),
 ('series', 0.5325809226575603),
 ('fellow', 0.5323318289869543),
 ('loves', 0.53062825106217038),
 ('revolution', 0.53062825106217038),
 ('olivier', 0.53062825106217038),
 ('roman', 0.53062825106217038),
 ('century', 0.53002783074992665),
 ('musical', 0.52966871156747064),
 ('heroic', 0.52925932545482868),
 ('approach', 0.52806743020049673),
 ('ironically', 0.52806743020049673),
 ('temple', 0.52806743020049673),
 ('moves', 0.5279372642387119),
 ('gift', 0.52702030968597136),
 ('julie', 0.52609309589677911),
 ('tells', 0.52415107836314001),
 ('radio', 0.52394671172868779),
 ('uncle', 0.52354439617376536),
 ('union', 0.52324814376454787),
 ('deep', 0.52309571635780505),
 ('reminds', 0.52157841554225237),
 ('famous', 0.52118841080153722),
 ('jazz', 0.52053443789295151),
 ('dennis', 0.51987545928590861),
 ('epic', 0.51919387343650736),
 ('adult', 0.519167695083386),
 ('shows', 0.51915322220375304),
 ('performed', 0.5191244265806858),
 ('demons', 0.5191244265806858),
 ('discovered', 0.51879379341516751),
 ('eric', 0.51879379341516751),
 ('youth', 0.5185626062681431),
 ('human', 0.51851411224987087),
 ('tarzan', 0.51813827061227724),
 ('ourselves', 0.51794309153485463),
 ('wwii', 0.51758240622887042),
 ('passion', 0.5162164724008671),
 ('desire', 0.51607497965213445),
 ('pays', 0.51581316527702981),
 ('dirty', 0.51557622652458857),
 ('fox', 0.51557622652458857),
 ('sympathetic', 0.51546600332249293),
 ('symbolism', 0.51546600332249293),
 ('attitude', 0.51530993621331933),
 ('appearances', 0.51466440007315639),
 ('jeremy', 0.51466440007315639),
 ('fun', 0.51439068993048687),
 ('south', 0.51420972175023116),
 ('arrives', 0.51409894911095988),
 ('present', 0.51341965894303732),
 ('com', 0.51326167856387173),
 ('smile', 0.51265880484765169),
 ('alan', 0.51082562376599072),
 ('ring', 0.51082562376599072),
 ('visit', 0.51082562376599072),
 ('fits', 0.51082562376599072),
 ('provided', 0.51082562376599072),
 ('carter', 0.51082562376599072),
 ('aging', 0.51082562376599072),
 ('countryside', 0.51082562376599072),
 ('begins', 0.51015650363396647),
 ('success', 0.50900578704900468),
 ('japan', 0.50900578704900468),
 ('accurate', 0.50895471583017893),
 ('proud', 0.50800474742434931),
 ('daily', 0.5075946031845443),
 ('karloff', 0.50724780241810674),
 ('atmospheric', 0.50724780241810674),
 ('recently', 0.50714914903668207),
 ('fu', 0.50704490092608467),
 ('horrors', 0.50656122497953315),
 ('finding', 0.50637127341661037),
 ('lust', 0.5059356384717989),
 ('hitchcock', 0.50574947073413001),
 ('among', 0.50334004951332734),
 ('viewing', 0.50302139827440906),
 ('investigation', 0.50262885656181222),
 ('shining', 0.50262885656181222),
 ('duo', 0.5020919437972361),
 ('cameron', 0.5020919437972361),
 ('finds', 0.50128303100539795),
 ('contemporary', 0.50077528791248915),
 ('genuine', 0.50046283673044401),
 ('frightening', 0.49995595152908684),
 ('plays', 0.49975983848890226),
 ('age', 0.49941323171424595),
 ('position', 0.49899116611898781),
 ('continues', 0.49863035067217237),
 ('roles', 0.49839716550752178),
 ('james', 0.49837216269470402),
 ('individuals', 0.49824684155913052),
 ('brought', 0.49783842823917956),
 ('hilarious', 0.49714551986191058),
 ('brutal', 0.49681488669639234),
 ('appropriate', 0.49643688631389105),
 ('dance', 0.49581998314812048),
 ('league', 0.49578774640145024),
 ('helping', 0.49578774640145024),
 ('answers', 0.49578774640145024),
 ('stunts', 0.49561620510246196),
 ('traveling', 0.49532143723002542),
 ('thoroughly', 0.49414593456733524),
 ('depicted', 0.49317068852726992),
 ('combination', 0.49247648509779424),
 ('honor', 0.49247648509779424),
 ('differences', 0.49247648509779424),
 ('fully', 0.49213349075383811),
 ('tracy', 0.49159426183810306),
 ('battles', 0.49140753790888908),
 ('possibility', 0.49112055268665822),
 ('romance', 0.4901589869574316),
 ('initially', 0.49002249613622745),
 ('happy', 0.4898997500608791),
 ('crime', 0.48977221456815834),
 ('singing', 0.4893852925281213),
 ('especially', 0.48901267837860624),
 ('shakespeare', 0.48754793889664511),
 ('hugh', 0.48729512635579658),
 ('detail', 0.48609484250827351),
 ('julia', 0.48550781578170082),
 ('san', 0.48550781578170082),
 ('guide', 0.48550781578170082),
 ('desperation', 0.48550781578170082),
 ('companion', 0.48550781578170082),
 ('strongly', 0.48460242866688824),
 ('necessary', 0.48302334245403883),
 ('humanity', 0.48265474679929443),
 ('drama', 0.48221998493060503),
 ('nonetheless', 0.48183808689273838),
 ('intrigue', 0.48183808689273838),
 ('warming', 0.48183808689273838),
 ('cuba', 0.48183808689273838),
 ('planned', 0.47957308026188628),
 ('pictures', 0.47929937011921681),
 ('broadcast', 0.47849024312305422),
 ('nine', 0.47803580094299974),
 ('settings', 0.47743860773325364),
 ('history', 0.47732966933780852),
 ('ordinary', 0.47725880012690741),
 ('trade', 0.47692407209030935),
 ('official', 0.47608267532211779),
 ('primary', 0.47608267532211779),
 ('episode', 0.47529620261150429),
 ('role', 0.47520268270188676),
 ('spirit', 0.47477690799839323),
 ('grey', 0.47409361449726067),
 ('ways', 0.47323464982718205),
 ('cup', 0.47260441094579297),
 ('piano', 0.47260441094579297),
 ('familiar', 0.47241617565111949),
 ('sinister', 0.47198579044972683),
 ('reveal', 0.47171449364936496),
 ('max', 0.47150852042515579),
 ('dated', 0.47121648567094482),
 ('losing', 0.47000362924573563),
 ('discovery', 0.47000362924573563),
 ('vicious', 0.47000362924573563),
 ('genuinely', 0.46871413841586385),
 ('hatred', 0.46734051182625186),
 ('mistaken', 0.46702300110759781),
 ('dream', 0.46608972992459924),
 ('challenge', 0.46608972992459924),
 ('crisis', 0.46575733836428446),
 ('photographed', 0.46488852857896512),
 ('critics', 0.46430560813109778),
 ('bird', 0.46430560813109778),
 ('machines', 0.46430560813109778),
 ('born', 0.46411383518967209),
 ('detective', 0.4636633473511525),
 ('higher', 0.46328467899699055),
 ('remains', 0.46262352194811296),
 ('inevitable', 0.46262352194811296),
 ('soviet', 0.4618180446592961),
 ('ryan', 0.46134556650262099),
 ('african', 0.46112595521371813),
 ('smaller', 0.46081520319132935),
 ('techniques', 0.46052488529119184),
 ('information', 0.46034171833399862),
 ('deserved', 0.45999798712841444),
 ('lynch', 0.45953232937844013),
 ('spielberg', 0.45953232937844013),
 ('cynical', 0.45953232937844013),
 ('tour', 0.45953232937844013),
 ('francisco', 0.45953232937844013),
 ('struggle', 0.45911782160048453),
 ('language', 0.45902121257712653),
 ('visual', 0.45823514408822852),
 ('warner', 0.45724137763188427),
 ('social', 0.45720078250735313),
 ('reality', 0.45719346885019546),
 ('hidden', 0.45675840249571492),
 ('breaking', 0.45601738727099561),
 ('sometimes', 0.45563021171182794),
 ('modern', 0.45500247579345005),
 ('surfing', 0.45425527227759638),
 ('popular', 0.45410691533051023),
 ('surprised', 0.4534409399850382),
 ('follows', 0.45245361754408348),
 ('keeps', 0.45234869400701483),
 ('john', 0.4520909494482197),
 ('mixed', 0.45198512374305722),
 ('defeat', 0.45198512374305722),
 ('justice', 0.45142724367280018),
 ('treasure', 0.45083371313801535),
 ('presents', 0.44973793178615257),
 ('years', 0.44919197032104968),
 ('chief', 0.44895022004790319),
 ('shadows', 0.44802472252696035),
 ('closely', 0.44701411102103689),
 ('segments', 0.44701411102103689),
 ('lose', 0.44658335503763702),
 ('caine', 0.44628710262841953),
 ('caught', 0.44610275383999071),
 ('hamlet', 0.44558510189758965),
 ('chinese', 0.44507424620321018),
 ('welcome', 0.44438052435783792),
 ('birth', 0.44368632092836219),
 ('represents', 0.44320543609101143),
 ('puts', 0.44279106572085081),
 ('visuals', 0.44183275227903923),
 ('fame', 0.44183275227903923),
 ('closer', 0.44183275227903923),
 ('web', 0.44183275227903923),
 ('criminal', 0.4412745608048752),
 ('minor', 0.4409224199448939),
 ('jon', 0.44086703515908027),
 ('liked', 0.44074991514020723),
 ('restaurant', 0.44031183943833246),
 ('de', 0.43983275161237217),
 ('flaws', 0.43983275161237217),
 ('searching', 0.4393666597838457),
 ('rap', 0.43891304217570443),
 ('light', 0.43884433018199892),
 ('elizabeth', 0.43872232986464677),
 ('marry', 0.43861731542506488),
 ('learned', 0.43825493093115531),
 ('controversial', 0.43825493093115531),
 ('oz', 0.43825493093115531),
 ('slowly', 0.43785660389939979),
 ('comedic', 0.43721380642274466),
 ('wayne', 0.43721380642274466),
 ('thrilling', 0.43721380642274466),
 ('bridge', 0.43721380642274466),
 ('married', 0.43658501682196887),
 ('nazi', 0.4361020775700542),
 ('murder', 0.4353180712578455),
 ('physical', 0.4353180712578455),
 ('johnny', 0.43483971678806865),
 ('michelle', 0.43445264498141672),
 ('wallace', 0.43403848055222038),
 ('comedies', 0.43395706390247063),
 ('silent', 0.43395706390247063),
 ('played', 0.43387244114515305),
 ('international', 0.43363598507486073),
 ('vision', 0.43286408229627887),
 ('intelligent', 0.43196704885367099),
 ('shop', 0.43078291609245434),
 ('also', 0.43036720209769169),
 ('levels', 0.4302451371066513),
 ('miss', 0.43006426712153217),
 ('movement', 0.4295626596872249),
 ...]

In [13]:
# words most frequently seen in a review with a "NEGATIVE" label
list(reversed(pos_neg_ratios.most_common()))[0:30]


Out[13]:
[('boll', -4.0778152602708904),
 ('uwe', -3.9218753018711578),
 ('seagal', -3.3202501058581921),
 ('unwatchable', -3.0269848170580955),
 ('stinker', -2.9876839403711624),
 ('mst', -2.7753833211707968),
 ('incoherent', -2.7641396677532537),
 ('unfunny', -2.5545257844967644),
 ('waste', -2.4907515123361046),
 ('blah', -2.4475792789485005),
 ('horrid', -2.3715779644809971),
 ('pointless', -2.3451073877136341),
 ('atrocious', -2.3187369339642556),
 ('redeeming', -2.2667790015910296),
 ('prom', -2.2601040980178784),
 ('drivel', -2.2476029585766928),
 ('lousy', -2.2118080125207054),
 ('worst', -2.1930856334332267),
 ('laughable', -2.172468615469592),
 ('awful', -2.1385076866397488),
 ('poorly', -2.1326133844207011),
 ('wasting', -2.1178155545614512),
 ('remotely', -2.111046881095167),
 ('existent', -2.0024805005437076),
 ('boredom', -1.9241486572738005),
 ('miserably', -1.9216610938019989),
 ('sucks', -1.9166645809588516),
 ('uninspired', -1.9131499212248517),
 ('lame', -1.9117232884159072),
 ('insult', -1.9085323769376259)]

Transforming Text into Numbers


In [14]:
from IPython.display import Image

review = "This was a horrible, terrible movie."

Image(filename='sentiment_network.png')


Out[14]:

In [15]:
review = "The movie was excellent"

Image(filename='sentiment_network_pos.png')


Out[15]:

Project 2: Creating the Input/Output Data


In [16]:
vocab = set(total_counts.keys())
vocab_size = len(vocab)
print(vocab_size)


74074

In [17]:
list(vocab)


Out[17]:
['',
 'nelly',
 'edible',
 'balthazar',
 'humanimal',
 'mirrors',
 'grotto',
 'fulci',
 'jelinek',
 'overstylized',
 'funt',
 'paxson',
 'tasty',
 'mecca',
 'hobart',
 'awaythere',
 'gunfights',
 'wymore',
 'deadbeats',
 'nykvist',
 'glaucoma',
 'faq',
 'disgraces',
 'teinowitz',
 'fuing',
 'vandalizing',
 'dredge',
 'haft',
 'striker',
 'rotoscope',
 'cell',
 'dental',
 'colorized',
 'capucine',
 'desecration',
 'ustase',
 'thorough',
 'fufu',
 'jarndyce',
 'edwige',
 'gould',
 'gunpoint',
 'documentation',
 'exhaustion',
 'cadet',
 'bartholomew',
 'franclisco',
 'nanosecond',
 'dullness',
 'hawtrey',
 'assholes',
 'mormondom',
 'blew',
 'shannon',
 'connell',
 'dived',
 'clockers',
 'utan',
 'gilligans',
 'ghettoized',
 'subject',
 'mahkmalbaf',
 'tortoise',
 'millenial',
 'unicorns',
 'gokbakar',
 'define',
 'unlock',
 'honhyol',
 'ob',
 'benefactors',
 'zacatecas',
 'gaunt',
 'laure',
 'lemora',
 'composition',
 'unoriginals',
 'arron',
 'tomie',
 'garzon',
 'backorder',
 'piana',
 'knapsacks',
 'orwell',
 'lafayette',
 'greatfully',
 'pluto',
 'hartmann',
 'galitzien',
 'keither',
 'incinerate',
 'version',
 'knowles',
 'peoples',
 'taxidermist',
 'unprofessional',
 'standby',
 'sharkey',
 'spinnaker',
 'langoliers',
 'smg',
 'dashingly',
 'nips',
 'graziano',
 'artificats',
 'microsecond',
 'fullest',
 'karnstein',
 'shuffle',
 'beardy',
 'kernels',
 'sangre',
 'portfolio',
 'filmgoing',
 'aisles',
 'golly',
 'disbeliever',
 'occupation',
 'milligan',
 'citizen',
 'antagonism',
 'emeraldas',
 'teetering',
 'parodist',
 'remorseless',
 'endless',
 'swaying',
 'livesfor',
 'closet',
 'nets',
 'cremator',
 'respondents',
 'contractor',
 'keays',
 'putzing',
 'suneil',
 'crocodiles',
 'fuzzies',
 'kites',
 'regular',
 'decade',
 'intercuts',
 'brodie',
 'standardize',
 'beddoe',
 'nilsen',
 'favorit',
 'yugoslaviadeath',
 'derange',
 'uomini',
 'ggooooodd',
 'putrid',
 'tiki',
 'valentines',
 'sexualized',
 'windows',
 'solders',
 'misserably',
 'bullpen',
 'shredder',
 'wierd',
 'persecutors',
 'formate',
 'innovates',
 'chalice',
 'date',
 'lajo',
 'kubrik',
 'henpecked',
 'sodden',
 'curiosity',
 'vey',
 'snuffed',
 'bludhorn',
 'koslo',
 'slayers',
 'lavvies',
 'piped',
 'wistfully',
 'dureyea',
 'traffickers',
 'giusstissia',
 'repelling',
 'neighborhood',
 'ronda',
 'thurman',
 'pies',
 'lexington',
 'vampiress',
 'galilee',
 'angelina',
 'intestines',
 'hastily',
 'abrazo',
 'bounder',
 'calgary',
 'conceit',
 'stubbed',
 'castellitto',
 'receding',
 'shivering',
 'extravant',
 'crossword',
 'guevarra',
 'guzmn',
 'assa',
 'squids',
 'jorney',
 'phisics',
 'fave',
 'seena',
 'chucked',
 'afterlives',
 'cannavale',
 'transaction',
 'bennett',
 'gani',
 'dependances',
 'havin',
 'harbor',
 'metoo',
 'charasmatic',
 'redraws',
 'brommel',
 'inexpert',
 'parries',
 'flashlights',
 'jitterbug',
 'reappears',
 'quickie',
 'alittle',
 'morsels',
 'motel',
 'bandolero',
 'cookbook',
 'abre',
 'showgirl',
 'spotter',
 'poofed',
 'flaps',
 'demonstrative',
 'doen',
 'bestowed',
 'remnant',
 'ogle',
 'pores',
 'ascend',
 'ripsnorting',
 'meditating',
 'spore',
 'choronzhon',
 'lebanese',
 'damagingly',
 'anonymous',
 'notary',
 'quipped',
 'duckula',
 'spurts',
 'figureheads',
 'ignoring',
 'vincenzo',
 'annna',
 'pelicula',
 'nunez',
 'dispite',
 'orphanages',
 'assigns',
 'lps',
 'intricacies',
 'impertubable',
 'naughton',
 'molls',
 'supurb',
 'symmetry',
 'badest',
 'amrique',
 'retold',
 'gorbunov',
 'chemestry',
 'collage',
 'webs',
 'delivery',
 'cedrac',
 'takashima',
 'train',
 'rosalione',
 'aintry',
 'morel',
 'homies',
 'medium',
 'airy',
 'winds',
 'vices',
 'summarises',
 'wingism',
 'actioners',
 'margarine',
 'neufeld',
 'thither',
 'tbu',
 'irritate',
 'investigated',
 'redeye',
 'normative',
 'preferentiate',
 'acupat',
 'proibir',
 'shad',
 'shaolin',
 'catholics',
 'swigged',
 'nrj',
 'burnside',
 'probabilistic',
 'alexander',
 'equipped',
 'recollects',
 'lavoura',
 'ashraf',
 'patients',
 'monograms',
 'rovers',
 'bouzaglo',
 'karva',
 'catalyst',
 'convoluted',
 'inauguration',
 'lor',
 'hauptmann',
 'esq',
 'gough',
 'insititue',
 'jerrine',
 'waystation',
 'outsleep',
 'marm',
 'whippet',
 'mcgee',
 'justis',
 'tastic',
 'andre',
 'shadix',
 'boulting',
 'burnsian',
 'goalposts',
 'sukumari',
 'feedback',
 'randi',
 'waterworks',
 'tropa',
 'harborfest',
 'patronize',
 'quick',
 'orchid',
 'cornrows',
 'playstation',
 'remaster',
 'objected',
 'transportive',
 'neverland',
 'erendira',
 'backgrounds',
 'gimmicky',
 'dinghy',
 'altaira',
 'murli',
 'occurrence',
 'hedrin',
 'submerges',
 'sportsmanship',
 'horsemen',
 'debuts',
 'scowling',
 'enraptured',
 'sizzle',
 'loathsomeness',
 'freighting',
 'beija',
 'alwina',
 'stingray',
 'pointedly',
 'eros',
 'salivating',
 'warsaw',
 'quintessence',
 'standardization',
 'plaggy',
 'einsteins',
 'alfre',
 'clinically',
 'cliches',
 'degenerates',
 'butler',
 'councilor',
 'cornering',
 'retool',
 'pervaded',
 'piquantly',
 'seduced',
 'temptations',
 'seduces',
 'browsed',
 'bluto',
 'aroused',
 'addicting',
 'sector',
 'congruent',
 'underserved',
 'dumbfounding',
 'mplex',
 'franciso',
 'brads',
 'croc',
 'outwardly',
 'kinda',
 'qdlm',
 'ordet',
 'hotel',
 'skims',
 'hassett',
 'naturalness',
 'weasels',
 'geezer',
 'homicidally',
 'hel',
 'xv',
 'parley',
 'untapped',
 'perf',
 'russel',
 'barfly',
 'fantasticaly',
 'amelie',
 'andcompelling',
 'projector',
 'wouldnt',
 'debutant',
 'scuzzy',
 'coddling',
 'wusa',
 'mimics',
 'swingers',
 'badalamenti',
 'ising',
 'fla',
 'wellworn',
 'kryukova',
 'sledge',
 'adjustments',
 'atlas',
 'imac',
 'chhaliya',
 'tracklist',
 'krutcher',
 'morin',
 'suble',
 'lunk',
 'madrid',
 'lolol',
 'sinker',
 'switch',
 'doctresses',
 'skinniness',
 'danube',
 'mechenosets',
 'visualization',
 'practicable',
 'nguyen',
 'adama',
 'shatnerism',
 'stridence',
 'sommers',
 'winstons',
 'africa',
 'homoerotica',
 'remarry',
 'fundamentalism',
 'kelley',
 'shuttlecock',
 'atmosphereic',
 'hmm',
 'anonymously',
 'branka',
 'rance',
 'verica',
 'scholar',
 'antimilitarism',
 'alternations',
 'hearken',
 'scoyk',
 'fright',
 'throaty',
 'maciste',
 'kerchner',
 'zoimbies',
 'griffiths',
 'uptake',
 'autumn',
 'gudarian',
 'reckon',
 'expense',
 'rishtaa',
 'cultish',
 'badged',
 'sharpville',
 'ngassa',
 'kiddy',
 'undergraduate',
 'lodging',
 'roses',
 'ow',
 'vows',
 'undependable',
 'bangladesh',
 'rhea',
 'slap',
 'irc',
 'la',
 'arranges',
 'wherewithal',
 'fluids',
 'unwanted',
 'airports',
 'eked',
 'repetitiveness',
 'resists',
 'synopsizing',
 'mabille',
 'rakeesha',
 'provincial',
 'mhatre',
 'knifing',
 'frequents',
 'bloodedness',
 'afternoon',
 'vaughn',
 'sondra',
 'insipid',
 'tashed',
 'speeder',
 'pursing',
 'paralyze',
 'meowed',
 'xiao',
 'udit',
 'sega',
 'raunchy',
 'riccardo',
 'junked',
 'retch',
 'deputized',
 'mew',
 'glide',
 'niece',
 'yoon',
 'infantrymen',
 'zappati',
 'repetoir',
 'vivaldi',
 'macarena',
 'yachting',
 'locality',
 'favreau',
 'talker',
 'reommended',
 'johnathon',
 'inflicting',
 'lipped',
 'prognathous',
 'elaborating',
 'mukhsin',
 'immaculate',
 'zeffrelli',
 'heeds',
 'interislander',
 'groucho',
 'tryst',
 'halloweed',
 'snobbism',
 'essex',
 'lah',
 'adaptaion',
 'undeath',
 'unhappy',
 'active',
 'mcmurphy',
 'tapeheads',
 'possesing',
 'oar',
 'available',
 'catchier',
 'stroh',
 'greico',
 'respectability',
 'tibetian',
 'eccentrically',
 'balibar',
 'hug',
 'pragmatically',
 'thomson',
 'holo',
 'nomm',
 'labeled',
 'transporting',
 'franaise',
 'rummage',
 'disorients',
 'danayel',
 'yehweh',
 'ungoriest',
 'guetary',
 'coveys',
 'kya',
 'siding',
 'simms',
 'sirpa',
 'midseason',
 'slaughtered',
 'jariwala',
 'everone',
 'parentage',
 'objectionable',
 'flubbed',
 'winselt',
 'plumber',
 'seasoning',
 'didnt',
 'atmospherics',
 'beaver',
 'notld',
 'hima',
 'organisms',
 'ga',
 'brokovich',
 'franticly',
 'cleverness',
 'portion',
 'everytown',
 'couorse',
 'cornishman',
 'trespassers',
 'collars',
 'broke',
 'hobgobblins',
 'cinema',
 'yvonne',
 'sniffle',
 'ilva',
 'odd',
 'otherworldly',
 'opportunities',
 'repartee',
 'predating',
 'undertakings',
 'egdy',
 'moira',
 'amount',
 'adept',
 'mikaele',
 'wolfpack',
 'sexploitational',
 'anddd',
 'rocco',
 'beacham',
 'mic',
 'asha',
 'cheadles',
 'kindler',
 'ostensible',
 'instructor',
 'earthlings',
 'scenario',
 'doga',
 'weeklies',
 'collaborators',
 'doodlebops',
 'cyphers',
 'saigon',
 'goins',
 'corenblith',
 'ursla',
 'orignal',
 'destined',
 'diego',
 'sheila',
 'massenet',
 'theologians',
 'mouthed',
 'slit',
 'peril',
 'scarlatti',
 'ponds',
 'asians',
 'locomotive',
 'envoked',
 'persuasively',
 'ishwar',
 'waterside',
 'magus',
 'quadrophenia',
 'cathrine',
 'ramrodder',
 'preferences',
 'elliot',
 'generations',
 'dunny',
 'category',
 'dentures',
 'antes',
 'outage',
 'bisexual',
 'improvising',
 'shaun',
 'evokes',
 'kanoodling',
 'hermione',
 'called',
 'numa',
 'ossification',
 'increadably',
 'nonintentional',
 'sellon',
 'cobbled',
 'outrageously',
 'profuse',
 'woodcraft',
 'absolutley',
 'knowledges',
 'quelling',
 'positronic',
 'orderd',
 'jacket',
 'glancing',
 'crissakes',
 'taro',
 'corrected',
 'thereabouts',
 'penitently',
 'westpoint',
 'skinnings',
 'cheesefest',
 'gray',
 'delfont',
 'kunst',
 'soiled',
 's',
 'lining',
 'kalifonia',
 'arrangements',
 'amy',
 'sofaer',
 'rested',
 'interrelationship',
 'sione',
 'snapshot',
 'rapidshare',
 'snipering',
 'dicker',
 'opportunists',
 'ring',
 'nallae',
 'cacophonous',
 'omgosh',
 'hisako',
 'polymer',
 'scum',
 'lock',
 'zi',
 'mclaglen',
 'apartments',
 'mourikis',
 'kerrie',
 'shamroy',
 'wigged',
 'meru',
 'farreley',
 'blush',
 'broderick',
 'flava',
 'kallio',
 'interpreter',
 'sctv',
 'vigo',
 'sperm',
 'eponine',
 'exwife',
 'lbeck',
 'lapyuta',
 'unexpecting',
 'donning',
 'commandeering',
 'xxx',
 'require',
 'bulges',
 'woozy',
 'disaffected',
 'passivity',
 'moonlighting',
 'overture',
 'groundhog',
 'smartest',
 'dunaway',
 'thierry',
 'meself',
 'peyote',
 'acrid',
 'heavyhanded',
 'little',
 'nuggets',
 'admissible',
 'checkered',
 'subways',
 'legality',
 'chun',
 'suffocation',
 'cyclist',
 'transposed',
 'lucid',
 'conjured',
 'greeeeeat',
 'speeds',
 'guffman',
 'ibm',
 'throws',
 'liliom',
 'embarrasing',
 'meandered',
 'gads',
 'pertinent',
 'goodbyes',
 'blooming',
 'lakeside',
 'objective',
 'pensacola',
 'whites',
 'realistic',
 'brightens',
 'diarrhea',
 'salsa',
 'fllm',
 'cancerous',
 'densest',
 'defile',
 'pandey',
 'tangent',
 'alex',
 'hammeresses',
 'grrrrrrrrrr',
 'jaco',
 'collaring',
 'idiom',
 'gruber',
 'stolz',
 'burdening',
 'calibre',
 'authorize',
 'voc',
 'ajikko',
 'mirai',
 'subtitled',
 'megabomb',
 'accords',
 'wears',
 'strapping',
 'peggey',
 'originals',
 'schlockmeister',
 'methadrine',
 'fosters',
 'knowing',
 'hurdes',
 'passionately',
 'koichiro',
 'cya',
 'ladybug',
 'persecution',
 'cowgirl',
 'betrail',
 'illustration',
 'stars',
 'tempo',
 'yee',
 'boccaccio',
 'participating',
 'podge',
 'partly',
 'schoenaerts',
 'sto',
 'mariette',
 'afterall',
 'goldfinger',
 'gw',
 'rock',
 'gottfried',
 'bespectacled',
 'horgan',
 'dreamlike',
 'borlenghi',
 'aretom',
 'enfolds',
 'mutual',
 'crap',
 'philco',
 'joey',
 'getter',
 'wertmuller',
 'insufficiency',
 'ridgway',
 'breda',
 'rather',
 'scolds',
 'stomaching',
 'warmers',
 'rivera',
 'serbo',
 'ylva',
 'stil',
 'genorisity',
 'expand',
 'karizma',
 'friar',
 'thongs',
 'dollops',
 'depletion',
 'deadened',
 'vacu',
 'goykiba',
 'childen',
 'fiendish',
 'doremus',
 'kidneys',
 'channing',
 'evaporation',
 'riot',
 'trustee',
 'neighborliness',
 'handball',
 'confirming',
 'sebei',
 'upendings',
 'rien',
 'better',
 'alternating',
 'bulbs',
 'bakke',
 'hump',
 'medicalgenetic',
 'introductions',
 'kikabidze',
 'moko',
 'exploiter',
 'scarecreow',
 'habenera',
 'recklessness',
 'steadfastly',
 'lhasa',
 'mockage',
 'sullies',
 'heisthostage',
 'redeemable',
 'acquaintaces',
 'redifined',
 'umpire',
 'nina',
 'bocanegra',
 'bastketball',
 'areakt',
 'tray',
 'speedo',
 'klineschloss',
 'bumper',
 'mobiles',
 'fire',
 'reassuming',
 'groovay',
 'yellowish',
 'frighting',
 'quigon',
 'escalate',
 'loane',
 'hipocracy',
 'marcos',
 'pawnshop',
 'repetitively',
 'fainting',
 'alternated',
 'mutually',
 'sensuously',
 'boatswain',
 'doctrine',
 'taxi',
 'shroeder',
 'pedagogue',
 'toy',
 'mandy',
 'lyndhurst',
 'housed',
 'spies',
 'terribly',
 'cheaper',
 ...]

In [18]:
import numpy as np

layer_0 = np.zeros((1,vocab_size))
layer_0


Out[18]:
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.]])

In [19]:
from IPython.display import Image
Image(filename='sentiment_network.png')


Out[19]:

In [20]:
word2index = {}

for i,word in enumerate(vocab):
    word2index[word] = i
word2index


Out[20]:
{'': 0,
 'nelly': 1,
 'edible': 2,
 'balthazar': 3,
 'humanimal': 4,
 'mirrors': 5,
 'grotto': 6,
 'fulci': 7,
 'jelinek': 8,
 'overstylized': 9,
 'funt': 10,
 'paxson': 11,
 'tasty': 12,
 'mecca': 13,
 'hobart': 14,
 'awaythere': 15,
 'gunfights': 16,
 'wymore': 17,
 'deadbeats': 18,
 'nykvist': 19,
 'glaucoma': 20,
 'faq': 21,
 'disgraces': 22,
 'teinowitz': 23,
 'fuing': 24,
 'vandalizing': 25,
 'dredge': 26,
 'haft': 27,
 'striker': 28,
 'rotoscope': 29,
 'cell': 30,
 'dental': 31,
 'colorized': 32,
 'capucine': 33,
 'desecration': 34,
 'ustase': 35,
 'thorough': 36,
 'fufu': 37,
 'jarndyce': 38,
 'edwige': 39,
 'gould': 40,
 'gunpoint': 41,
 'documentation': 42,
 'exhaustion': 43,
 'cadet': 44,
 'bartholomew': 45,
 'franclisco': 46,
 'nanosecond': 47,
 'dullness': 48,
 'hawtrey': 49,
 'assholes': 50,
 'mormondom': 51,
 'blew': 52,
 'shannon': 53,
 'connell': 54,
 'dived': 55,
 'clockers': 56,
 'utan': 57,
 'gilligans': 58,
 'ghettoized': 59,
 'subject': 60,
 'mahkmalbaf': 61,
 'tortoise': 62,
 'millenial': 63,
 'unicorns': 64,
 'gokbakar': 65,
 'define': 66,
 'unlock': 67,
 'honhyol': 68,
 'ob': 69,
 'benefactors': 70,
 'zacatecas': 71,
 'gaunt': 72,
 'laure': 73,
 'lemora': 74,
 'composition': 75,
 'unoriginals': 76,
 'arron': 77,
 'tomie': 78,
 'garzon': 79,
 'backorder': 80,
 'piana': 81,
 'knapsacks': 82,
 'orwell': 83,
 'lafayette': 84,
 'greatfully': 85,
 'pluto': 86,
 'hartmann': 87,
 'galitzien': 88,
 'keither': 89,
 'incinerate': 90,
 'version': 91,
 'knowles': 92,
 'peoples': 93,
 'taxidermist': 94,
 'unprofessional': 95,
 'standby': 96,
 'sharkey': 97,
 'spinnaker': 98,
 'langoliers': 99,
 'smg': 100,
 'dashingly': 101,
 'nips': 102,
 'graziano': 103,
 'artificats': 104,
 'microsecond': 105,
 'fullest': 106,
 'karnstein': 107,
 'shuffle': 108,
 'beardy': 109,
 'kernels': 110,
 'sangre': 111,
 'portfolio': 112,
 'filmgoing': 113,
 'aisles': 114,
 'golly': 115,
 'disbeliever': 116,
 'occupation': 117,
 'milligan': 118,
 'citizen': 119,
 'antagonism': 120,
 'emeraldas': 121,
 'teetering': 122,
 'parodist': 123,
 'remorseless': 124,
 'endless': 125,
 'swaying': 126,
 'livesfor': 127,
 'closet': 128,
 'nets': 129,
 'cremator': 130,
 'respondents': 131,
 'contractor': 132,
 'keays': 133,
 'putzing': 134,
 'suneil': 135,
 'crocodiles': 136,
 'fuzzies': 137,
 'kites': 138,
 'regular': 139,
 'decade': 140,
 'intercuts': 141,
 'brodie': 142,
 'standardize': 143,
 'beddoe': 144,
 'nilsen': 145,
 'favorit': 146,
 'yugoslaviadeath': 147,
 'derange': 148,
 'uomini': 149,
 'ggooooodd': 150,
 'putrid': 151,
 'tiki': 152,
 'valentines': 153,
 'sexualized': 154,
 'windows': 155,
 'solders': 156,
 'misserably': 157,
 'bullpen': 158,
 'shredder': 159,
 'wierd': 160,
 'persecutors': 161,
 'formate': 162,
 'innovates': 163,
 'chalice': 164,
 'date': 165,
 'lajo': 166,
 'kubrik': 167,
 'henpecked': 168,
 'sodden': 169,
 'curiosity': 170,
 'vey': 171,
 'snuffed': 172,
 'bludhorn': 173,
 'koslo': 174,
 'slayers': 175,
 'lavvies': 176,
 'piped': 177,
 'wistfully': 178,
 'dureyea': 179,
 'traffickers': 180,
 'giusstissia': 181,
 'repelling': 182,
 'neighborhood': 183,
 'ronda': 184,
 'thurman': 185,
 'pies': 186,
 'lexington': 187,
 'vampiress': 188,
 'galilee': 189,
 'angelina': 190,
 'intestines': 191,
 'hastily': 192,
 'abrazo': 193,
 'bounder': 194,
 'calgary': 195,
 'conceit': 196,
 'stubbed': 197,
 'castellitto': 198,
 'receding': 199,
 'shivering': 200,
 'extravant': 201,
 'crossword': 202,
 'guevarra': 203,
 'guzmn': 204,
 'assa': 205,
 'squids': 206,
 'jorney': 207,
 'phisics': 208,
 'fave': 209,
 'seena': 210,
 'chucked': 211,
 'afterlives': 212,
 'cannavale': 213,
 'transaction': 214,
 'bennett': 215,
 'gani': 216,
 'dependances': 217,
 'havin': 218,
 'harbor': 219,
 'metoo': 220,
 'charasmatic': 221,
 'redraws': 222,
 'brommel': 223,
 'inexpert': 224,
 'parries': 225,
 'flashlights': 226,
 'jitterbug': 227,
 'reappears': 228,
 'quickie': 229,
 'alittle': 230,
 'morsels': 231,
 'motel': 232,
 'bandolero': 233,
 'cookbook': 234,
 'abre': 235,
 'showgirl': 236,
 'spotter': 237,
 'poofed': 238,
 'flaps': 239,
 'demonstrative': 240,
 'doen': 241,
 'bestowed': 242,
 'remnant': 243,
 'ogle': 244,
 'pores': 245,
 'ascend': 246,
 'ripsnorting': 247,
 'meditating': 248,
 'spore': 249,
 'choronzhon': 250,
 'lebanese': 251,
 'damagingly': 252,
 'anonymous': 253,
 'notary': 254,
 'quipped': 255,
 'duckula': 256,
 'spurts': 257,
 'figureheads': 258,
 'ignoring': 259,
 'vincenzo': 260,
 'annna': 261,
 'pelicula': 262,
 'nunez': 263,
 'dispite': 264,
 'orphanages': 265,
 'assigns': 266,
 'lps': 267,
 'intricacies': 268,
 'impertubable': 269,
 'naughton': 270,
 'molls': 271,
 'supurb': 272,
 'symmetry': 273,
 'badest': 274,
 'amrique': 275,
 'retold': 276,
 'gorbunov': 277,
 'chemestry': 278,
 'collage': 279,
 'webs': 280,
 'delivery': 281,
 'cedrac': 282,
 'takashima': 283,
 'train': 284,
 'rosalione': 285,
 'aintry': 286,
 'morel': 287,
 'homies': 288,
 'medium': 289,
 'airy': 290,
 'winds': 291,
 'vices': 292,
 'summarises': 293,
 'wingism': 294,
 'actioners': 295,
 'margarine': 296,
 'neufeld': 297,
 'thither': 298,
 'tbu': 299,
 'irritate': 300,
 'investigated': 301,
 'redeye': 302,
 'normative': 303,
 'preferentiate': 304,
 'acupat': 305,
 'proibir': 306,
 'shad': 307,
 'shaolin': 308,
 'catholics': 309,
 'swigged': 310,
 'nrj': 311,
 'burnside': 312,
 'probabilistic': 313,
 'alexander': 314,
 'equipped': 315,
 'recollects': 316,
 'lavoura': 317,
 'ashraf': 318,
 'patients': 319,
 'monograms': 320,
 'rovers': 321,
 'bouzaglo': 322,
 'karva': 323,
 'catalyst': 324,
 'convoluted': 325,
 'inauguration': 326,
 'lor': 327,
 'hauptmann': 328,
 'esq': 329,
 'gough': 330,
 'insititue': 331,
 'jerrine': 332,
 'waystation': 333,
 'outsleep': 334,
 'marm': 335,
 'whippet': 336,
 'mcgee': 337,
 'justis': 338,
 'tastic': 339,
 'andre': 340,
 'shadix': 341,
 'boulting': 342,
 'burnsian': 343,
 'goalposts': 344,
 'sukumari': 345,
 'feedback': 346,
 'randi': 347,
 'waterworks': 348,
 'tropa': 349,
 'harborfest': 350,
 'patronize': 351,
 'quick': 352,
 'orchid': 353,
 'cornrows': 354,
 'playstation': 355,
 'remaster': 356,
 'objected': 357,
 'transportive': 358,
 'neverland': 359,
 'erendira': 360,
 'backgrounds': 361,
 'gimmicky': 362,
 'dinghy': 363,
 'altaira': 364,
 'murli': 365,
 'occurrence': 366,
 'hedrin': 367,
 'submerges': 368,
 'sportsmanship': 369,
 'horsemen': 370,
 'debuts': 371,
 'scowling': 372,
 'enraptured': 373,
 'sizzle': 374,
 'loathsomeness': 375,
 'freighting': 376,
 'beija': 377,
 'alwina': 378,
 'stingray': 379,
 'pointedly': 380,
 'eros': 381,
 'salivating': 382,
 'warsaw': 383,
 'quintessence': 384,
 'standardization': 385,
 'plaggy': 386,
 'einsteins': 387,
 'alfre': 388,
 'clinically': 389,
 'cliches': 390,
 'degenerates': 391,
 'butler': 392,
 'councilor': 393,
 'cornering': 394,
 'retool': 395,
 'pervaded': 396,
 'piquantly': 397,
 'seduced': 398,
 'temptations': 399,
 'seduces': 400,
 'browsed': 401,
 'bluto': 402,
 'aroused': 403,
 'addicting': 404,
 'sector': 405,
 'congruent': 406,
 'underserved': 407,
 'dumbfounding': 408,
 'mplex': 409,
 'franciso': 410,
 'brads': 411,
 'croc': 412,
 'outwardly': 413,
 'kinda': 414,
 'qdlm': 415,
 'ordet': 416,
 'hotel': 417,
 'skims': 418,
 'hassett': 419,
 'naturalness': 420,
 'weasels': 421,
 'geezer': 422,
 'homicidally': 423,
 'hel': 424,
 'xv': 425,
 'parley': 426,
 'untapped': 427,
 'perf': 428,
 'russel': 429,
 'barfly': 430,
 'fantasticaly': 431,
 'amelie': 432,
 'andcompelling': 433,
 'projector': 434,
 'wouldnt': 435,
 'debutant': 436,
 'scuzzy': 437,
 'coddling': 438,
 'wusa': 439,
 'mimics': 440,
 'swingers': 441,
 'badalamenti': 442,
 'ising': 443,
 'fla': 444,
 'wellworn': 445,
 'kryukova': 446,
 'sledge': 447,
 'adjustments': 448,
 'atlas': 449,
 'imac': 450,
 'chhaliya': 451,
 'tracklist': 452,
 'krutcher': 453,
 'morin': 454,
 'suble': 455,
 'lunk': 456,
 'madrid': 457,
 'lolol': 458,
 'sinker': 459,
 'switch': 460,
 'doctresses': 461,
 'skinniness': 462,
 'danube': 463,
 'mechenosets': 464,
 'visualization': 465,
 'practicable': 466,
 'nguyen': 467,
 'adama': 468,
 'shatnerism': 469,
 'stridence': 470,
 'sommers': 471,
 'winstons': 472,
 'africa': 473,
 'homoerotica': 474,
 'remarry': 475,
 'fundamentalism': 476,
 'kelley': 477,
 'shuttlecock': 478,
 'atmosphereic': 479,
 'hmm': 480,
 'anonymously': 481,
 'branka': 482,
 'rance': 483,
 'verica': 484,
 'scholar': 485,
 'antimilitarism': 486,
 'alternations': 487,
 'hearken': 488,
 'scoyk': 489,
 'fright': 490,
 'throaty': 491,
 'maciste': 492,
 'kerchner': 493,
 'zoimbies': 494,
 'griffiths': 495,
 'uptake': 496,
 'autumn': 497,
 'gudarian': 498,
 'reckon': 499,
 'expense': 500,
 'rishtaa': 501,
 'cultish': 502,
 'badged': 503,
 'sharpville': 504,
 'ngassa': 505,
 'kiddy': 506,
 'undergraduate': 507,
 'lodging': 508,
 'roses': 509,
 'ow': 510,
 'vows': 511,
 'undependable': 512,
 'bangladesh': 513,
 'rhea': 514,
 'slap': 515,
 'irc': 516,
 'la': 517,
 'arranges': 518,
 'wherewithal': 519,
 'fluids': 520,
 'unwanted': 521,
 'airports': 522,
 'eked': 523,
 'repetitiveness': 524,
 'resists': 525,
 'synopsizing': 526,
 'mabille': 527,
 'rakeesha': 528,
 'provincial': 529,
 'mhatre': 530,
 'knifing': 531,
 'frequents': 532,
 'bloodedness': 533,
 'afternoon': 534,
 'vaughn': 535,
 'sondra': 536,
 'insipid': 537,
 'tashed': 538,
 'speeder': 539,
 'pursing': 540,
 'paralyze': 541,
 'meowed': 542,
 'xiao': 543,
 'udit': 544,
 'sega': 545,
 'raunchy': 546,
 'riccardo': 547,
 'junked': 548,
 'retch': 549,
 'deputized': 550,
 'mew': 551,
 'glide': 552,
 'niece': 553,
 'yoon': 554,
 'infantrymen': 555,
 'zappati': 556,
 'repetoir': 557,
 'vivaldi': 558,
 'macarena': 559,
 'yachting': 560,
 'locality': 561,
 'favreau': 562,
 'talker': 563,
 'reommended': 564,
 'johnathon': 565,
 'inflicting': 566,
 'lipped': 567,
 'prognathous': 568,
 'elaborating': 569,
 'mukhsin': 570,
 'immaculate': 571,
 'zeffrelli': 572,
 'heeds': 573,
 'interislander': 574,
 'groucho': 575,
 'tryst': 576,
 'halloweed': 577,
 'snobbism': 578,
 'essex': 579,
 'lah': 580,
 'adaptaion': 581,
 'undeath': 582,
 'unhappy': 583,
 'active': 584,
 'mcmurphy': 585,
 'tapeheads': 586,
 'possesing': 587,
 'oar': 588,
 'available': 589,
 'catchier': 590,
 'stroh': 591,
 'greico': 592,
 'respectability': 593,
 'tibetian': 594,
 'eccentrically': 595,
 'balibar': 596,
 'hug': 597,
 'pragmatically': 598,
 'thomson': 599,
 'holo': 600,
 'nomm': 601,
 'labeled': 602,
 'transporting': 603,
 'franaise': 604,
 'rummage': 605,
 'disorients': 606,
 'danayel': 607,
 'yehweh': 608,
 'ungoriest': 609,
 'guetary': 610,
 'coveys': 611,
 'kya': 612,
 'siding': 613,
 'simms': 614,
 'sirpa': 615,
 'midseason': 616,
 'slaughtered': 617,
 'jariwala': 618,
 'everone': 619,
 'parentage': 620,
 'objectionable': 621,
 'flubbed': 622,
 'winselt': 623,
 'plumber': 624,
 'seasoning': 625,
 'didnt': 626,
 'atmospherics': 627,
 'beaver': 628,
 'notld': 629,
 'hima': 630,
 'organisms': 631,
 'ga': 632,
 'brokovich': 633,
 'franticly': 634,
 'cleverness': 635,
 'portion': 636,
 'everytown': 637,
 'couorse': 638,
 'cornishman': 639,
 'trespassers': 640,
 'collars': 641,
 'broke': 642,
 'hobgobblins': 643,
 'cinema': 644,
 'yvonne': 645,
 'sniffle': 646,
 'ilva': 647,
 'odd': 648,
 'otherworldly': 649,
 'opportunities': 650,
 'repartee': 651,
 'predating': 652,
 'undertakings': 653,
 'egdy': 654,
 'moira': 655,
 'amount': 656,
 'adept': 657,
 'mikaele': 658,
 'wolfpack': 659,
 'sexploitational': 660,
 'anddd': 661,
 'rocco': 662,
 'beacham': 663,
 'mic': 664,
 'asha': 665,
 'cheadles': 666,
 'kindler': 667,
 'ostensible': 668,
 'instructor': 669,
 'earthlings': 670,
 'scenario': 671,
 'doga': 672,
 'weeklies': 673,
 'collaborators': 674,
 'doodlebops': 675,
 'cyphers': 676,
 'saigon': 677,
 'goins': 678,
 'corenblith': 679,
 'ursla': 680,
 'orignal': 681,
 'destined': 682,
 'diego': 683,
 'sheila': 684,
 'massenet': 685,
 'theologians': 686,
 'mouthed': 687,
 'slit': 688,
 'peril': 689,
 'scarlatti': 690,
 'ponds': 691,
 'asians': 692,
 'locomotive': 693,
 'envoked': 694,
 'persuasively': 695,
 'ishwar': 696,
 'waterside': 697,
 'magus': 698,
 'quadrophenia': 699,
 'cathrine': 700,
 'ramrodder': 701,
 'preferences': 702,
 'elliot': 703,
 'generations': 704,
 'dunny': 705,
 'category': 706,
 'dentures': 707,
 'antes': 708,
 'outage': 709,
 'bisexual': 710,
 'improvising': 711,
 'shaun': 712,
 'evokes': 713,
 'kanoodling': 714,
 'hermione': 715,
 'called': 716,
 'numa': 717,
 'ossification': 718,
 'increadably': 719,
 'nonintentional': 720,
 'sellon': 721,
 'cobbled': 722,
 'outrageously': 723,
 'profuse': 724,
 'woodcraft': 725,
 'absolutley': 726,
 'knowledges': 727,
 'quelling': 728,
 'positronic': 729,
 'orderd': 730,
 'jacket': 731,
 'glancing': 732,
 'crissakes': 733,
 'taro': 734,
 'corrected': 735,
 'thereabouts': 736,
 'penitently': 737,
 'westpoint': 738,
 'skinnings': 739,
 'cheesefest': 740,
 'gray': 741,
 'delfont': 742,
 'kunst': 743,
 'soiled': 744,
 's': 745,
 'lining': 746,
 'kalifonia': 747,
 'arrangements': 748,
 'amy': 749,
 'sofaer': 750,
 'rested': 751,
 'interrelationship': 752,
 'sione': 753,
 'snapshot': 754,
 'rapidshare': 755,
 'snipering': 756,
 'dicker': 757,
 'opportunists': 758,
 'ring': 759,
 'nallae': 760,
 'cacophonous': 761,
 'omgosh': 762,
 'hisako': 763,
 'polymer': 764,
 'scum': 765,
 'lock': 766,
 'zi': 767,
 'mclaglen': 768,
 'apartments': 769,
 'mourikis': 770,
 'kerrie': 771,
 'shamroy': 772,
 'wigged': 773,
 'meru': 774,
 'farreley': 775,
 'blush': 776,
 'broderick': 777,
 'flava': 778,
 'kallio': 779,
 'interpreter': 780,
 'sctv': 781,
 'vigo': 782,
 'sperm': 783,
 'eponine': 784,
 'exwife': 785,
 'lbeck': 786,
 'lapyuta': 787,
 'unexpecting': 788,
 'donning': 789,
 'commandeering': 790,
 'xxx': 791,
 'require': 792,
 'bulges': 793,
 'woozy': 794,
 'disaffected': 795,
 'passivity': 796,
 'moonlighting': 797,
 'overture': 798,
 'groundhog': 799,
 'smartest': 800,
 'dunaway': 801,
 'thierry': 802,
 'meself': 803,
 'peyote': 804,
 'acrid': 805,
 'heavyhanded': 806,
 'little': 807,
 'nuggets': 808,
 'admissible': 809,
 'checkered': 810,
 'subways': 811,
 'legality': 812,
 'chun': 813,
 'suffocation': 814,
 'cyclist': 815,
 'transposed': 816,
 'lucid': 817,
 'conjured': 818,
 'greeeeeat': 819,
 'speeds': 820,
 'guffman': 821,
 'ibm': 822,
 'throws': 823,
 'liliom': 824,
 'embarrasing': 825,
 'meandered': 826,
 'gads': 827,
 'pertinent': 828,
 'goodbyes': 829,
 'blooming': 830,
 'lakeside': 831,
 'objective': 832,
 'pensacola': 833,
 'whites': 834,
 'realistic': 835,
 'brightens': 836,
 'diarrhea': 837,
 'salsa': 838,
 'fllm': 839,
 'cancerous': 840,
 'densest': 841,
 'defile': 842,
 'pandey': 843,
 'tangent': 844,
 'alex': 845,
 'hammeresses': 846,
 'grrrrrrrrrr': 847,
 'jaco': 848,
 'collaring': 849,
 'idiom': 850,
 'gruber': 851,
 'stolz': 852,
 'burdening': 853,
 'calibre': 854,
 'authorize': 855,
 'voc': 856,
 'ajikko': 857,
 'mirai': 858,
 'subtitled': 859,
 'megabomb': 860,
 'accords': 861,
 'wears': 862,
 'strapping': 863,
 'peggey': 864,
 'originals': 865,
 'schlockmeister': 866,
 'methadrine': 867,
 'fosters': 868,
 'knowing': 869,
 'hurdes': 870,
 'passionately': 871,
 'koichiro': 872,
 'cya': 873,
 'ladybug': 874,
 'persecution': 875,
 'cowgirl': 876,
 'betrail': 877,
 'illustration': 878,
 'stars': 879,
 'tempo': 880,
 'yee': 881,
 'boccaccio': 882,
 'participating': 883,
 'podge': 884,
 'partly': 885,
 'schoenaerts': 886,
 'sto': 887,
 'mariette': 888,
 'afterall': 889,
 'goldfinger': 890,
 'gw': 891,
 'rock': 892,
 'gottfried': 893,
 'bespectacled': 894,
 'horgan': 895,
 'dreamlike': 896,
 'borlenghi': 897,
 'aretom': 898,
 'enfolds': 899,
 'mutual': 900,
 'crap': 901,
 'philco': 902,
 'joey': 903,
 'getter': 904,
 'wertmuller': 905,
 'insufficiency': 906,
 'ridgway': 907,
 'breda': 908,
 'rather': 909,
 'scolds': 910,
 'stomaching': 911,
 'warmers': 912,
 'rivera': 913,
 'serbo': 914,
 'ylva': 915,
 'stil': 916,
 'genorisity': 917,
 'expand': 918,
 'karizma': 919,
 'friar': 920,
 'thongs': 921,
 'dollops': 922,
 'depletion': 923,
 'deadened': 924,
 'vacu': 925,
 'goykiba': 926,
 'childen': 927,
 'fiendish': 928,
 'doremus': 929,
 'kidneys': 930,
 'channing': 931,
 'evaporation': 932,
 'riot': 933,
 'trustee': 934,
 'neighborliness': 935,
 'handball': 936,
 'confirming': 937,
 'sebei': 938,
 'upendings': 939,
 'rien': 940,
 'better': 941,
 'alternating': 942,
 'bulbs': 943,
 'bakke': 944,
 'hump': 945,
 'medicalgenetic': 946,
 'introductions': 947,
 'kikabidze': 948,
 'moko': 949,
 'exploiter': 950,
 'scarecreow': 951,
 'habenera': 952,
 'recklessness': 953,
 'steadfastly': 954,
 'lhasa': 955,
 'mockage': 956,
 'sullies': 957,
 'heisthostage': 958,
 'redeemable': 959,
 'acquaintaces': 960,
 'redifined': 961,
 'umpire': 962,
 'nina': 963,
 'bocanegra': 964,
 'bastketball': 965,
 'areakt': 966,
 'tray': 967,
 'speedo': 968,
 'klineschloss': 969,
 'bumper': 970,
 'mobiles': 971,
 'fire': 972,
 'reassuming': 973,
 'groovay': 974,
 'yellowish': 975,
 'frighting': 976,
 'quigon': 977,
 'escalate': 978,
 'loane': 979,
 'hipocracy': 980,
 'marcos': 981,
 'pawnshop': 982,
 'repetitively': 983,
 'fainting': 984,
 'alternated': 985,
 'mutually': 986,
 'sensuously': 987,
 'boatswain': 988,
 'doctrine': 989,
 'taxi': 990,
 'shroeder': 991,
 'pedagogue': 992,
 'toy': 993,
 'mandy': 994,
 'lyndhurst': 995,
 'housed': 996,
 'spies': 997,
 'terribly': 998,
 'cheaper': 999,
 ...}

In [21]:
def update_input_layer(review):
    
    global layer_0
    
    # clear out previous state, reset the layer to be all 0s
    layer_0 *= 0
    for word in review.split(" "):
        layer_0[0][word2index[word]] += 1

update_input_layer(reviews[0])

In [22]:
layer_0


Out[22]:
array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

In [23]:
def get_target_for_label(label):
    if(label == 'POSITIVE'):
        return 1
    else:
        return 0

In [24]:
labels[0]


Out[24]:
'POSITIVE'

In [25]:
get_target_for_label(labels[0])


Out[25]:
1

In [26]:
labels[1]


Out[26]:
'NEGATIVE'

In [27]:
get_target_for_label(labels[1])


Out[27]:
0

Project 3: Building a Neural Network

  • Start with your neural network from the last chapter
  • 3 layer neural network
  • no non-linearity in hidden layer
  • use our functions to create the training data
  • create a "pre_process_data" function to create vocabulary for our training data generating functions
  • modify "train" to train over the entire corpus

Where to Get Help if You Need it


In [27]:
import time
import sys
import numpy as np

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
       
        # set our random number generator 
        np.random.seed(1)
    
        self.pre_process_data(reviews, labels)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self, reviews, labels):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
    
        
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            if(word in self.word2index.keys()):
                self.layer_0[0][self.word2index[word]] += 1
                
    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def train(self, training_reviews, training_labels):
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer
            self.update_input_layer(review)

            # Hidden layer
            layer_1 = self.layer_0.dot(self.weights_0_1)

            # Output layer
            layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # TODO: Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # TODO: Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # TODO: Update the weights
            self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
            if(i % 2500 == 0):
                print("")
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer
        self.update_input_layer(review.lower())

        # Hidden layer
        layer_1 = self.layer_0.dot(self.weights_0_1)

        # Output layer
        layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [87]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)

In [61]:
# evaluate our model before training (just to show how horrible it is)
mlp.test(reviews[-1000:],labels[-1000:])


Progress:99.9% Speed(reviews/sec):587.5% #Correct:500 #Tested:1000 Testing Accuracy:50.0%

In [62]:
# train the network
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):89.58 #Correct:1250 #Trained:2501 Training Accuracy:49.9%
Progress:20.8% Speed(reviews/sec):95.03 #Correct:2500 #Trained:5001 Training Accuracy:49.9%
Progress:27.4% Speed(reviews/sec):95.46 #Correct:3295 #Trained:6592 Training Accuracy:49.9%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-62-d0f5d85ad402> in <module>()
      1 # train the network
----> 2 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-59-6334c4ec4642> in train(self, training_reviews, training_labels)
    117             # TODO: Update the weights
    118             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 119             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
    120 
    121             if(np.abs(layer_2_error) < 0.5):

KeyboardInterrupt: 

In [63]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.01)

In [64]:
# train the network
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):96.39 #Correct:1247 #Trained:2501 Training Accuracy:49.8%
Progress:20.8% Speed(reviews/sec):99.31 #Correct:2497 #Trained:5001 Training Accuracy:49.9%
Progress:22.8% Speed(reviews/sec):99.02 #Correct:2735 #Trained:5476 Training Accuracy:49.9%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-64-d0f5d85ad402> in <module>()
      1 # train the network
----> 2 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-59-6334c4ec4642> in train(self, training_reviews, training_labels)
    117             # TODO: Update the weights
    118             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 119             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
    120 
    121             if(np.abs(layer_2_error) < 0.5):

KeyboardInterrupt: 

In [65]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001)

In [66]:
# train the network
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):98.77 #Correct:1267 #Trained:2501 Training Accuracy:50.6%
Progress:20.8% Speed(reviews/sec):98.79 #Correct:2640 #Trained:5001 Training Accuracy:52.7%
Progress:31.2% Speed(reviews/sec):98.58 #Correct:4109 #Trained:7501 Training Accuracy:54.7%
Progress:41.6% Speed(reviews/sec):93.78 #Correct:5638 #Trained:10001 Training Accuracy:56.3%
Progress:52.0% Speed(reviews/sec):91.76 #Correct:7246 #Trained:12501 Training Accuracy:57.9%
Progress:62.5% Speed(reviews/sec):92.42 #Correct:8841 #Trained:15001 Training Accuracy:58.9%
Progress:69.4% Speed(reviews/sec):92.58 #Correct:9934 #Trained:16668 Training Accuracy:59.5%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-66-d0f5d85ad402> in <module>()
      1 # train the network
----> 2 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-59-6334c4ec4642> in train(self, training_reviews, training_labels)
    117             # TODO: Update the weights
    118             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 119             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
    120 
    121             if(np.abs(layer_2_error) < 0.5):

KeyboardInterrupt: 

Understanding Neural Noise


In [28]:
from IPython.display import Image
Image(filename='sentiment_network.png')


Out[28]:

In [28]:
def update_input_layer(review):
    
    global layer_0
    
    # clear out previous state, reset the layer to be all 0s
    layer_0 *= 0
    for word in review.split(" "):
        layer_0[0][word2index[word]] += 1

update_input_layer(reviews[0])

In [30]:
layer_0


Out[30]:
array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

In [31]:
review_counter = Counter()

In [32]:
for word in reviews[0].split(" "):
    review_counter[word] += 1

In [33]:
review_counter.most_common()


Out[33]:
[('.', 27),
 ('', 18),
 ('the', 9),
 ('to', 6),
 ('high', 5),
 ('i', 5),
 ('bromwell', 4),
 ('is', 4),
 ('a', 4),
 ('teachers', 4),
 ('that', 4),
 ('of', 4),
 ('it', 2),
 ('at', 2),
 ('as', 2),
 ('school', 2),
 ('my', 2),
 ('in', 2),
 ('me', 2),
 ('students', 2),
 ('their', 2),
 ('student', 2),
 ('cartoon', 1),
 ('comedy', 1),
 ('ran', 1),
 ('same', 1),
 ('time', 1),
 ('some', 1),
 ('other', 1),
 ('programs', 1),
 ('about', 1),
 ('life', 1),
 ('such', 1),
 ('years', 1),
 ('teaching', 1),
 ('profession', 1),
 ('lead', 1),
 ('believe', 1),
 ('s', 1),
 ('satire', 1),
 ('much', 1),
 ('closer', 1),
 ('reality', 1),
 ('than', 1),
 ('scramble', 1),
 ('survive', 1),
 ('financially', 1),
 ('insightful', 1),
 ('who', 1),
 ('can', 1),
 ('see', 1),
 ('right', 1),
 ('through', 1),
 ('pathetic', 1),
 ('pomp', 1),
 ('pettiness', 1),
 ('whole', 1),
 ('situation', 1),
 ('all', 1),
 ('remind', 1),
 ('schools', 1),
 ('knew', 1),
 ('and', 1),
 ('when', 1),
 ('saw', 1),
 ('episode', 1),
 ('which', 1),
 ('repeatedly', 1),
 ('tried', 1),
 ('burn', 1),
 ('down', 1),
 ('immediately', 1),
 ('recalled', 1),
 ('classic', 1),
 ('line', 1),
 ('inspector', 1),
 ('m', 1),
 ('here', 1),
 ('sack', 1),
 ('one', 1),
 ('your', 1),
 ('welcome', 1),
 ('expect', 1),
 ('many', 1),
 ('adults', 1),
 ('age', 1),
 ('think', 1),
 ('far', 1),
 ('fetched', 1),
 ('what', 1),
 ('pity', 1),
 ('isn', 1),
 ('t', 1)]

Project 4: Reducing Noise in our Input Data


In [34]:
import time
import sys
import numpy as np

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
       
        # set our random number generator 
        np.random.seed(1)
    
        self.pre_process_data(reviews, labels)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self, reviews, labels):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
    
        
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            if(word in self.word2index.keys()):
                self.layer_0[0][self.word2index[word]] = 1
                
    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def train(self, training_reviews, training_labels):
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer
            self.update_input_layer(review)

            # Hidden layer
            layer_1 = self.layer_0.dot(self.weights_0_1)

            # Output layer
            layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # TODO: Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # TODO: Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # TODO: Update the weights
            self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
            if(i % 2500 == 0):
                print("")
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer
        self.update_input_layer(review.lower())

        # Hidden layer
        layer_1 = self.layer_0.dot(self.weights_0_1)

        # Output layer
        layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [83]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)

In [84]:
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):91.50 #Correct:1795 #Trained:2501 Training Accuracy:71.7%
Progress:20.8% Speed(reviews/sec):95.25 #Correct:3811 #Trained:5001 Training Accuracy:76.2%
Progress:31.2% Speed(reviews/sec):93.74 #Correct:5898 #Trained:7501 Training Accuracy:78.6%
Progress:41.6% Speed(reviews/sec):93.69 #Correct:8042 #Trained:10001 Training Accuracy:80.4%
Progress:52.0% Speed(reviews/sec):95.27 #Correct:10186 #Trained:12501 Training Accuracy:81.4%
Progress:62.5% Speed(reviews/sec):98.19 #Correct:12317 #Trained:15001 Training Accuracy:82.1%
Progress:72.9% Speed(reviews/sec):98.56 #Correct:14440 #Trained:17501 Training Accuracy:82.5%
Progress:83.3% Speed(reviews/sec):99.74 #Correct:16613 #Trained:20001 Training Accuracy:83.0%
Progress:93.7% Speed(reviews/sec):100.7 #Correct:18794 #Trained:22501 Training Accuracy:83.5%
Progress:99.9% Speed(reviews/sec):101.9 #Correct:20115 #Trained:24000 Training Accuracy:83.8%

In [85]:
# evaluate our model before training (just to show how horrible it is)
mlp.test(reviews[-1000:],labels[-1000:])


Progress:99.9% Speed(reviews/sec):832.7% #Correct:851 #Tested:1000 Testing Accuracy:85.1%

Analyzing Inefficiencies in our Network


In [35]:
Image(filename='sentiment_network_sparse.png')


Out[35]:

In [36]:
layer_0 = np.zeros(10)

In [37]:
layer_0


Out[37]:
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [38]:
layer_0[4] = 1
layer_0[9] = 1

In [39]:
layer_0


Out[39]:
array([ 0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.])

In [40]:
weights_0_1 = np.random.randn(10,5)

In [41]:
layer_0.dot(weights_0_1)


Out[41]:
array([ 0.24672723,  1.92863801, -2.70116461, -1.47036003, -1.4735157 ])

In [42]:
indices = [4,9]

In [43]:
layer_1 = np.zeros(5)

In [44]:
for index in indices:
    layer_1 += (weights_0_1[index])

In [45]:
layer_1


Out[45]:
array([ 0.24672723,  1.92863801, -2.70116461, -1.47036003, -1.4735157 ])

In [46]:
Image(filename='sentiment_network_sparse_2.png')


Out[46]:

Project 5: Making our Network More Efficient


In [47]:
import time
import sys

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
       
        np.random.seed(1)
    
        self.pre_process_data(reviews)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self,reviews):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
        self.layer_1 = np.zeros((1,hidden_nodes))
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            self.layer_0[0][self.word2index[word]] = 1

    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def train(self, training_reviews_raw, training_labels):
        
        training_reviews = list()
        for review in training_reviews_raw:
            indices = set()
            for word in review.split(" "):
                if(word in self.word2index.keys()):
                    indices.add(self.word2index[word])
            training_reviews.append(list(indices))
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer

            # Hidden layer
#             layer_1 = self.layer_0.dot(self.weights_0_1)
            self.layer_1 *= 0
            for index in review:
                self.layer_1 += self.weights_0_1[index]
            
            # Output layer
            layer_2 = self.sigmoid(self.layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # Update the weights
            self.weights_1_2 -= self.layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            
            for index in review:
                self.weights_0_1[index] -= layer_1_delta[0] * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
        
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer


        # Hidden layer
        self.layer_1 *= 0
        unique_indices = set()
        for word in review.lower().split(" "):
            if word in self.word2index.keys():
                unique_indices.add(self.word2index[word])
        for index in unique_indices:
            self.layer_1 += self.weights_0_1[index]
        
        # Output layer
        layer_2 = self.sigmoid(self.layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [48]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)

In [49]:
mlp.train(reviews[:-1000],labels[:-1000])


Progress:99.9% Speed(reviews/sec):1009. #Correct:20022 #Trained:24000 Training Accuracy:83.4%

In [50]:
# evaluate our model before training (just to show how horrible it is)
mlp.test(reviews[-1000:],labels[-1000:])


Progress:99.9% Speed(reviews/sec):1419.% #Correct:848 #Tested:1000 Testing Accuracy:84.8%

Further Noise Reduction


In [51]:
Image(filename='sentiment_network_sparse_2.png')


Out[51]:

In [52]:
# words most frequently seen in a review with a "POSITIVE" label
pos_neg_ratios.most_common()


Out[52]:
[('edie', 4.6913478822291435),
 ('paulie', 4.0775374439057197),
 ('felix', 3.1527360223636558),
 ('polanski', 2.8233610476132043),
 ('matthau', 2.8067217286092401),
 ('victoria', 2.6810215287142909),
 ('mildred', 2.6026896854443837),
 ('gandhi', 2.5389738710582761),
 ('flawless', 2.451005098112319),
 ('superbly', 2.2600254785752498),
 ('perfection', 2.1594842493533721),
 ('astaire', 2.1400661634962708),
 ('captures', 2.0386195471595809),
 ('voight', 2.0301704926730531),
 ('wonderfully', 2.0218960560332353),
 ('powell', 1.9783454248084671),
 ('brosnan', 1.9547990964725592),
 ('lily', 1.9203768470501485),
 ('bakshi', 1.9029851043382795),
 ('lincoln', 1.9014583864844796),
 ('refreshing', 1.8551812956655511),
 ('breathtaking', 1.8481124057791867),
 ('bourne', 1.8478489358790986),
 ('lemmon', 1.8458266904983307),
 ('delightful', 1.8002701588959635),
 ('flynn', 1.7996646487351682),
 ('andrews', 1.7764919970972666),
 ('homer', 1.7692866133759964),
 ('beautifully', 1.7626953362841438),
 ('soccer', 1.7578579175523736),
 ('elvira', 1.7397031072720019),
 ('underrated', 1.7197859696029656),
 ('gripping', 1.7165360479904674),
 ('superb', 1.7091514458966952),
 ('delight', 1.6714733033535532),
 ('welles', 1.6677068205580761),
 ('sadness', 1.663505133704376),
 ('sinatra', 1.6389967146756448),
 ('touching', 1.637217476541176),
 ('timeless', 1.62924053973028),
 ('macy', 1.6211339521972916),
 ('unforgettable', 1.6177367152487956),
 ('favorites', 1.6158688027643908),
 ('stewart', 1.6119987332957739),
 ('sullivan', 1.6094379124341003),
 ('extraordinary', 1.6094379124341003),
 ('hartley', 1.6094379124341003),
 ('brilliantly', 1.5950491749820008),
 ('friendship', 1.5677652160335325),
 ('wonderful', 1.5645425925262093),
 ('palma', 1.5553706911638245),
 ('magnificent', 1.54663701119507),
 ('finest', 1.5462590108125689),
 ('jackie', 1.5439233053234738),
 ('ritter', 1.5404450409471491),
 ('tremendous', 1.5184661342283736),
 ('freedom', 1.5091151908062312),
 ('fantastic', 1.5048433868558566),
 ('terrific', 1.5026699370083942),
 ('noir', 1.493925025312256),
 ('sidney', 1.493925025312256),
 ('outstanding', 1.4910053152089213),
 ('pleasantly', 1.4894785973551214),
 ('mann', 1.4894785973551214),
 ('nancy', 1.488077055429833),
 ('marie', 1.4825711915553104),
 ('marvelous', 1.4739999415389962),
 ('excellent', 1.4647538505723599),
 ('ruth', 1.4596256342054401),
 ('stanwyck', 1.4412101187160054),
 ('widmark', 1.4350845252893227),
 ('splendid', 1.4271163556401458),
 ('chan', 1.423108334242607),
 ('exceptional', 1.4201959127955721),
 ('tender', 1.410986973710262),
 ('gentle', 1.4078005663408544),
 ('poignant', 1.4022947024663317),
 ('gem', 1.3932148039644643),
 ('amazing', 1.3919815802404802),
 ('chilling', 1.3862943611198906),
 ('fisher', 1.3862943611198906),
 ('davies', 1.3862943611198906),
 ('captivating', 1.3862943611198906),
 ('darker', 1.3652409519220583),
 ('april', 1.3499267169490159),
 ('kelly', 1.3461743673304654),
 ('blake', 1.3418425985490567),
 ('overlooked', 1.329135947279942),
 ('ralph', 1.32818673031261),
 ('bette', 1.3156767939059373),
 ('hoffman', 1.3150668518315229),
 ('cole', 1.3121863889661687),
 ('shines', 1.3049487216659381),
 ('powerful', 1.2999662776313934),
 ('notch', 1.2950456896547455),
 ('remarkable', 1.2883688239495823),
 ('pitt', 1.286210902562908),
 ('winters', 1.2833463918674481),
 ('vivid', 1.2762934659055623),
 ('gritty', 1.2757524867200667),
 ('giallo', 1.2745029551317739),
 ('portrait', 1.2704625455947689),
 ('innocence', 1.2694300209805796),
 ('psychiatrist', 1.2685113254635072),
 ('favorite', 1.2668956297860055),
 ('ensemble', 1.2656663733312759),
 ('stunning', 1.2622417124499117),
 ('burns', 1.259880436264232),
 ('garbo', 1.258954938743289),
 ('barbara', 1.2580400255962119),
 ('philip', 1.2527629684953681),
 ('panic', 1.2527629684953681),
 ('holly', 1.2527629684953681),
 ('carol', 1.2481440226390734),
 ('perfect', 1.246742480713785),
 ('appreciated', 1.2462482874741743),
 ('favourite', 1.2411123512753928),
 ('journey', 1.2367626271489269),
 ('rural', 1.235471471385307),
 ('bond', 1.2321436812926323),
 ('builds', 1.2305398317106577),
 ('brilliant', 1.2287554137664785),
 ('brooklyn', 1.2286654169163074),
 ('von', 1.225175011976539),
 ('recommended', 1.2163953243244932),
 ('unfolds', 1.2163953243244932),
 ('daniel', 1.20215296760895),
 ('perfectly', 1.1971931173405572),
 ('crafted', 1.1962507582320256),
 ('prince', 1.1939224684724346),
 ('troubled', 1.192138346678933),
 ('consequences', 1.1865810616140668),
 ('haunting', 1.1814999484738773),
 ('cinderella', 1.180052620608284),
 ('alexander', 1.1759989522835299),
 ('emotions', 1.1753049094563641),
 ('boxing', 1.1735135968412274),
 ('subtle', 1.1734135017508081),
 ('curtis', 1.1649873576129823),
 ('rare', 1.1566438362402944),
 ('loved', 1.1563661500586044),
 ('daughters', 1.1526795099383853),
 ('courage', 1.1438688802562305),
 ('dentist', 1.1426722784621401),
 ('highly', 1.1420208631618658),
 ('nominated', 1.1409146683587992),
 ('tony', 1.1397491942285991),
 ('draws', 1.1325138403437911),
 ('everyday', 1.1306150197542835),
 ('contrast', 1.1284652518177909),
 ('cried', 1.1213405397456659),
 ('fabulous', 1.1210851445201684),
 ('ned', 1.120591195386885),
 ('fay', 1.120591195386885),
 ('emma', 1.1184149159642893),
 ('sensitive', 1.113318436057805),
 ('smooth', 1.1089750757036563),
 ('dramas', 1.1080910326226534),
 ('today', 1.1050431789984001),
 ('helps', 1.1023091505494358),
 ('inspiring', 1.0986122886681098),
 ('jimmy', 1.0937696641923216),
 ('awesome', 1.0931328229034842),
 ('unique', 1.0881409888008142),
 ('tragic', 1.0871835928444868),
 ('intense', 1.0870514662670339),
 ('stellar', 1.0857088838322018),
 ('rival', 1.0822184788924332),
 ('provides', 1.0797081340289569),
 ('depression', 1.0782034170369026),
 ('shy', 1.0775588794702773),
 ('carrie', 1.076139432816051),
 ('blend', 1.0753554265038423),
 ('hank', 1.0736109864626924),
 ('diana', 1.0726368022648489),
 ('adorable', 1.0726368022648489),
 ('unexpected', 1.0722255334949147),
 ('achievement', 1.0668635903535293),
 ('bettie', 1.0663514264498881),
 ('happiness', 1.0632729222228008),
 ('glorious', 1.0608719606852626),
 ('davis', 1.0541605260972757),
 ('terrifying', 1.0525211814678428),
 ('beauty', 1.050410186850232),
 ('ideal', 1.0479685558493548),
 ('fears', 1.0467872208035236),
 ('hong', 1.0438040521731147),
 ('seasons', 1.0433496099930604),
 ('fascinating', 1.0414538748281612),
 ('carries', 1.0345904299031787),
 ('satisfying', 1.0321225473992768),
 ('definite', 1.0319209141694374),
 ('touched', 1.0296194171811581),
 ('greatest', 1.0248947127715422),
 ('creates', 1.0241097613701886),
 ('aunt', 1.023388867430522),
 ('walter', 1.022328983918479),
 ('spectacular', 1.0198314108149955),
 ('portrayal', 1.0189810189761024),
 ('ann', 1.0127808528183286),
 ('enterprise', 1.0116009116784799),
 ('musicals', 1.0096648026516135),
 ('deeply', 1.0094845087721023),
 ('incredible', 1.0061677561461084),
 ('mature', 1.0060195018402847),
 ('triumph', 0.99682959435816731),
 ('margaret', 0.99682959435816731),
 ('navy', 0.99493385919326827),
 ('harry', 0.99176919305006062),
 ('lucas', 0.990398704027877),
 ('sweet', 0.98966110487955483),
 ('joey', 0.98794672078059009),
 ('oscar', 0.98721905111049713),
 ('balance', 0.98649499054740353),
 ('warm', 0.98485340331145166),
 ('ages', 0.98449898190068863),
 ('guilt', 0.98082925301172619),
 ('glover', 0.98082925301172619),
 ('carrey', 0.98082925301172619),
 ('learns', 0.97881108885548895),
 ('unusual', 0.97788374278196932),
 ('sons', 0.97777581552483595),
 ('complex', 0.97761897738147796),
 ('essence', 0.97753435711487369),
 ('brazil', 0.9769153536905899),
 ('widow', 0.97650959186720987),
 ('solid', 0.97537964824416146),
 ('beautiful', 0.97326301262841053),
 ('holmes', 0.97246100334120955),
 ('awe', 0.97186058302896583),
 ('vhs', 0.97116734209998934),
 ('eerie', 0.97116734209998934),
 ('lonely', 0.96873720724669754),
 ('grim', 0.96873720724669754),
 ('sport', 0.96825047080486615),
 ('debut', 0.96508089604358704),
 ('destiny', 0.96343751029985703),
 ('thrillers', 0.96281074750904794),
 ('tears', 0.95977584381389391),
 ('rose', 0.95664202739772253),
 ('feelings', 0.95551144502743635),
 ('ginger', 0.95551144502743635),
 ('winning', 0.95471810900804055),
 ('stanley', 0.95387344302319799),
 ('cox', 0.95343027882361187),
 ('paris', 0.95278479030472663),
 ('heart', 0.95238806924516806),
 ('hooked', 0.95155887071161305),
 ('comfortable', 0.94803943018873538),
 ('mgm', 0.94446160884085151),
 ('masterpiece', 0.94155039863339296),
 ('themes', 0.94118828349588235),
 ('danny', 0.93967118051821874),
 ('anime', 0.93378388932167222),
 ('perry', 0.93328830824272613),
 ('joy', 0.93301752567946861),
 ('lovable', 0.93081883243706487),
 ('mysteries', 0.92953595862417571),
 ('hal', 0.92953595862417571),
 ('louis', 0.92871325187271225),
 ('charming', 0.92520609553210742),
 ('urban', 0.92367083917177761),
 ('allows', 0.92183091224977043),
 ('impact', 0.91815814604895041),
 ('italy', 0.91629073187415511),
 ('gradually', 0.91629073187415511),
 ('lifestyle', 0.91629073187415511),
 ('spy', 0.91289514287301687),
 ('treat', 0.91193342650519937),
 ('subsequent', 0.91056005716517008),
 ('kennedy', 0.90981821736853763),
 ('loving', 0.90967549275543591),
 ('surprising', 0.90937028902958128),
 ('quiet', 0.90648673177753425),
 ('winter', 0.90624039602065365),
 ('reveals', 0.90490540964902977),
 ('raw', 0.90445627422715225),
 ('funniest', 0.90078654533818991),
 ('pleased', 0.89994159387262562),
 ('norman', 0.89994159387262562),
 ('thief', 0.89874642222324552),
 ('season', 0.89827222637147675),
 ('secrets', 0.89794159320595857),
 ('colorful', 0.89705936994626756),
 ('highest', 0.8967461358011849),
 ('compelling', 0.89462923509297576),
 ('danes', 0.89248008318043659),
 ('castle', 0.88967708335606499),
 ('kudos', 0.88889175768604067),
 ('great', 0.88810470901464589),
 ('baseball', 0.88730319500090271),
 ('subtitles', 0.88730319500090271),
 ('bleak', 0.88730319500090271),
 ('winner', 0.88643776872447388),
 ('tragedy', 0.88563699078315261),
 ('todd', 0.88551907320740142),
 ('nicely', 0.87924946019380601),
 ('arthur', 0.87546873735389985),
 ('essential', 0.87373111745535925),
 ('gorgeous', 0.8731725250935497),
 ('fonda', 0.87294029100054127),
 ('eastwood', 0.87139541196626402),
 ('focuses', 0.87082835779739776),
 ('enjoyed', 0.87070195951624607),
 ('natural', 0.86997924506912838),
 ('intensity', 0.86835126958503595),
 ('witty', 0.86824103423244681),
 ('rob', 0.8642954367557748),
 ('worlds', 0.86377269759070874),
 ('health', 0.86113891179907498),
 ('magical', 0.85953791528170564),
 ('deeper', 0.85802182375017932),
 ('lucy', 0.85618680780444956),
 ('moving', 0.85566611005772031),
 ('lovely', 0.85290640004681306),
 ('purple', 0.8513711857748395),
 ('memorable', 0.84801189112086062),
 ('sings', 0.84729786038720367),
 ('craig', 0.84342938360928321),
 ('modesty', 0.84342938360928321),
 ('relate', 0.84326559685926517),
 ('episodes', 0.84223712084137292),
 ('strong', 0.84167135777060931),
 ('smith', 0.83959811108590054),
 ('tear', 0.83704136022001441),
 ('apartment', 0.83333115290549531),
 ('princess', 0.83290912293510388),
 ('disagree', 0.83290912293510388),
 ('kung', 0.83173334384609199),
 ('adventure', 0.83150561393278388),
 ('columbo', 0.82667857318446791),
 ('jake', 0.82667857318446791),
 ('adds', 0.82485652591452319),
 ('hart', 0.82472353834866463),
 ('strength', 0.82417544296634937),
 ('realizes', 0.82360006895738058),
 ('dave', 0.8232003088081431),
 ('childhood', 0.82208086393583857),
 ('forbidden', 0.81989888619908913),
 ('tight', 0.81883539572344199),
 ('surreal', 0.8178506590609026),
 ('manager', 0.81770990320170756),
 ('dancer', 0.81574950265227764),
 ('studios', 0.81093021621632877),
 ('con', 0.81093021621632877),
 ('miike', 0.80821651034473263),
 ('realistic', 0.80807714723392232),
 ('explicit', 0.80792269515237358),
 ('kurt', 0.8060875917405409),
 ('traditional', 0.80535917116687328),
 ('deals', 0.80535917116687328),
 ('holds', 0.80493858654806194),
 ('carl', 0.80437281567016972),
 ('touches', 0.80396154690023547),
 ('gene', 0.80314807577427383),
 ('albert', 0.8027669055771679),
 ('abc', 0.80234647252493729),
 ('cry', 0.80011930011211307),
 ('sides', 0.7995275841185171),
 ('develops', 0.79850769621777162),
 ('eyre', 0.79850769621777162),
 ('dances', 0.79694397424158891),
 ('oscars', 0.79633141679517616),
 ('legendary', 0.79600456599965308),
 ('hearted', 0.79492987486988764),
 ('importance', 0.79492987486988764),
 ('portraying', 0.79356592830699269),
 ('impressed', 0.79258107754813223),
 ('waters', 0.79112758892014912),
 ('empire', 0.79078565012386137),
 ('edge', 0.789774016249017),
 ('jean', 0.78845736036427028),
 ('environment', 0.78845736036427028),
 ('sentimental', 0.7864791203521645),
 ('captured', 0.78623760362595729),
 ('styles', 0.78592891401091158),
 ('daring', 0.78592891401091158),
 ('frank', 0.78275933924963248),
 ('tense', 0.78275933924963248),
 ('backgrounds', 0.78275933924963248),
 ('matches', 0.78275933924963248),
 ('gothic', 0.78209466657644144),
 ('sharp', 0.7814397877056235),
 ('achieved', 0.78015855754957497),
 ('court', 0.77947526404844247),
 ('steals', 0.7789140023173704),
 ('rules', 0.77844476107184035),
 ('colors', 0.77684619943659217),
 ('reunion', 0.77318988823348167),
 ('covers', 0.77139937745969345),
 ('tale', 0.77010822169607374),
 ('rain', 0.7683706017975328),
 ('denzel', 0.76804848873306297),
 ('stays', 0.76787072675588186),
 ('blob', 0.76725515271366718),
 ('maria', 0.76214005204689672),
 ('conventional', 0.76214005204689672),
 ('fresh', 0.76158434211317383),
 ('midnight', 0.76096977689870637),
 ('landscape', 0.75852993982279704),
 ('animated', 0.75768570169751648),
 ('titanic', 0.75666058628227129),
 ('sunday', 0.75666058628227129),
 ('spring', 0.7537718023763802),
 ('cagney', 0.7537718023763802),
 ('enjoyable', 0.75246375771636476),
 ('immensely', 0.75198768058287868),
 ('sir', 0.7507762933965817),
 ('nevertheless', 0.75067102469813185),
 ('driven', 0.74994477895307854),
 ('performances', 0.74883252516063137),
 ('memories', 0.74721440183022114),
 ('nowadays', 0.74721440183022114),
 ('simple', 0.74641420974143258),
 ('golden', 0.74533293373051557),
 ('leslie', 0.74533293373051557),
 ('lovers', 0.74497224842453125),
 ('relationship', 0.74484232345601786),
 ('supporting', 0.74357803418683721),
 ('che', 0.74262723782331497),
 ('packed', 0.7410032017375805),
 ('trek', 0.74021469141793106),
 ('provoking', 0.73840377214806618),
 ('strikes', 0.73759894313077912),
 ('depiction', 0.73682224406260699),
 ('emotional', 0.73678211645681524),
 ('secretary', 0.7366322924996842),
 ('influenced', 0.73511137965897755),
 ('florida', 0.73511137965897755),
 ('germany', 0.73288750920945944),
 ('brings', 0.73142936713096229),
 ('lewis', 0.73129894652432159),
 ('elderly', 0.73088750854279239),
 ('owner', 0.72743625403857748),
 ('streets', 0.72666987259858895),
 ('henry', 0.72642196944481741),
 ('portrays', 0.72593700338293632),
 ('bears', 0.7252354951114458),
 ('china', 0.72489587887452556),
 ('anger', 0.72439972406404984),
 ('society', 0.72433010799663333),
 ('available', 0.72415741730250549),
 ('best', 0.72347034060446314),
 ('bugs', 0.72270598280148979),
 ('magic', 0.71878961117328299),
 ('delivers', 0.71846498854423513),
 ('verhoeven', 0.71846498854423513),
 ('jim', 0.71783979315031676),
 ('donald', 0.71667767797013937),
 ('endearing', 0.71465338578090898),
 ('relationships', 0.71393795022901896),
 ('greatly', 0.71256526641704687),
 ('charlie', 0.71024161391924534),
 ('brad', 0.71024161391924534),
 ('simon', 0.70967648251115578),
 ('effectively', 0.70914752190638641),
 ('march', 0.70774597998109789),
 ('atmosphere', 0.70744773070214162),
 ('influence', 0.70733181555190172),
 ('genius', 0.706392407309966),
 ('emotionally', 0.70556970055850243),
 ('ken', 0.70526854109229009),
 ('identity', 0.70484322032313651),
 ('sophisticated', 0.70470800296102132),
 ('dan', 0.70457587638356811),
 ('andrew', 0.70329955202396321),
 ('india', 0.70144598337464037),
 ('roy', 0.69970458110610434),
 ('surprisingly', 0.6995780708902356),
 ('sky', 0.69780919366575667),
 ('romantic', 0.69664981111114743),
 ('match', 0.69566924999265523),
 ('meets', 0.69314718055994529),
 ('cowboy', 0.69314718055994529),
 ('wave', 0.69314718055994529),
 ('bitter', 0.69314718055994529),
 ('patient', 0.69314718055994529),
 ('stylish', 0.69314718055994529),
 ('britain', 0.69314718055994529),
 ('affected', 0.69314718055994529),
 ('beatty', 0.69314718055994529),
 ('love', 0.69198533541937324),
 ('paul', 0.68980827929443067),
 ('andy', 0.68846333124751902),
 ('performance', 0.68797386327972465),
 ('patrick', 0.68645819240914863),
 ('unlike', 0.68546468438792907),
 ('brooks', 0.68433655087779044),
 ('refuses', 0.68348526964820844),
 ('award', 0.6824518914431974),
 ('complaint', 0.6824518914431974),
 ('ride', 0.68229716453587952),
 ('dawson', 0.68171848473632257),
 ('luke', 0.68158635815886937),
 ('wells', 0.68087708796813096),
 ('france', 0.6804081547825156),
 ('sports', 0.68007509899259255),
 ('handsome', 0.68007509899259255),
 ('directs', 0.67875844310784572),
 ('rebel', 0.67875844310784572),
 ('greater', 0.67605274720064523),
 ('dreams', 0.67599410133369586),
 ('effective', 0.67565402311242806),
 ('interpretation', 0.67479804189174875),
 ('works', 0.67445504754779284),
 ('brando', 0.67445504754779284),
 ('noble', 0.6737290947028437),
 ('paced', 0.67314651385327573),
 ('le', 0.67067432470788668),
 ('master', 0.67015766233524654),
 ('h', 0.6696166831497512),
 ('rings', 0.66904962898088483),
 ('easy', 0.66895995494594152),
 ('city', 0.66820823221269321),
 ('sunshine', 0.66782937257565544),
 ('succeeds', 0.66647893347778397),
 ('relations', 0.664159643686693),
 ('england', 0.66387679825983203),
 ('glimpse', 0.66329421741026418),
 ('aired', 0.66268797307523675),
 ('sees', 0.66263163663399482),
 ('both', 0.66248336767382998),
 ('definitely', 0.66199789483898808),
 ('imaginative', 0.66139848224536502),
 ('appreciate', 0.66083893732728749),
 ('tricks', 0.66071190480679143),
 ('striking', 0.66071190480679143),
 ('carefully', 0.65999497324304479),
 ('complicated', 0.65981076029235353),
 ('perspective', 0.65962448852130173),
 ('trilogy', 0.65877953705573755),
 ('future', 0.65834665141052828),
 ('lion', 0.65742909795786608),
 ('douglas', 0.65540685257709819),
 ('victor', 0.65540685257709819),
 ('inspired', 0.65459851044271034),
 ('marriage', 0.65392646740666405),
 ('demands', 0.65392646740666405),
 ('father', 0.65172321672194655),
 ('page', 0.65123628494430852),
 ('instant', 0.65058756614114943),
 ('era', 0.6495567444850836),
 ('ruthless', 0.64934455790155243),
 ('saga', 0.64934455790155243),
 ('joan', 0.64891392558311978),
 ('joseph', 0.64841128671855386),
 ('workers', 0.64829661439459352),
 ('fantasy', 0.64726757480925168),
 ('distant', 0.64551913157069074),
 ('accomplished', 0.64551913157069074),
 ('manhattan', 0.64435701639051324),
 ('personal', 0.64355023942057321),
 ('meeting', 0.64313675998528386),
 ('individual', 0.64313675998528386),
 ('pushing', 0.64313675998528386),
 ('pleasant', 0.64250344774119039),
 ('brave', 0.64185388617239469),
 ('william', 0.64083139119578469),
 ('hudson', 0.64077919504262937),
 ('friendly', 0.63949446706762514),
 ('eccentric', 0.63907995928966954),
 ('awards', 0.63875310849414646),
 ('jack', 0.63838309514997038),
 ('seeking', 0.63808740337691783),
 ('divorce', 0.63757732940513456),
 ('colonel', 0.63757732940513456),
 ('jane', 0.63443957973316734),
 ('keeping', 0.63414883979798953),
 ('gives', 0.63383568159497883),
 ('ted', 0.63342794585832296),
 ('animation', 0.63208692379869902),
 ('progress', 0.6317782341836532),
 ('larger', 0.63127177684185776),
 ('concert', 0.63127177684185776),
 ('nation', 0.6296337748376194),
 ('albeit', 0.62739580299716491),
 ('adapted', 0.62613647027698516),
 ('discovers', 0.62542900650499444),
 ('classic', 0.62504956428050518),
 ('segment', 0.62335141862440335),
 ('morgan', 0.62303761437291871),
 ('mouse', 0.62294292188669675),
 ('impressive', 0.62211140744319349),
 ('artist', 0.62168821657780038),
 ('ultimate', 0.62168821657780038),
 ('griffith', 0.62117368093485603),
 ('drew', 0.62082651898031915),
 ('emily', 0.62082651898031915),
 ('moved', 0.6197197120051281),
 ('families', 0.61903920840622351),
 ('profound', 0.61903920840622351),
 ('innocent', 0.61851219917136446),
 ('versions', 0.61730910416844087),
 ('eddie', 0.61691981517206107),
 ('criticism', 0.61651395453902935),
 ('nature', 0.61594514653194088),
 ('recognized', 0.61518563909023349),
 ('sexuality', 0.61467556511845012),
 ('contract', 0.61400986000122149),
 ('brian', 0.61344043794920278),
 ('remembered', 0.6131044728864089),
 ('determined', 0.6123858239154869),
 ('offers', 0.61207935747116349),
 ('pleasure', 0.61195702582993206),
 ('washington', 0.61180154110599294),
 ('images', 0.61159731359583758),
 ('games', 0.61067095873570676),
 ('academy', 0.60872983874736208),
 ('fashioned', 0.60798937221963845),
 ('melodrama', 0.60749173598145145),
 ('rough', 0.60613580357031549),
 ('charismatic', 0.60613580357031549),
 ('peoples', 0.60613580357031549),
 ('dealing', 0.60517840761398811),
 ('fine', 0.60496962268013299),
 ('tap', 0.60391604683200273),
 ('trio', 0.60157998703445481),
 ('russell', 0.60120968523425966),
 ('figures', 0.60077386042893011),
 ('ward', 0.60005675749393339),
 ('shine', 0.59911823091166894),
 ('brady', 0.59911823091166894),
 ('job', 0.59845562125168661),
 ('satisfied', 0.59652034487087369),
 ('river', 0.59637962862495086),
 ('brown', 0.595773016534769),
 ('believable', 0.59566072133302495),
 ('always', 0.59470710774669278),
 ('bound', 0.59470710774669278),
 ('hall', 0.5933967777928858),
 ('cook', 0.5916777203950857),
 ('claire', 0.59136448625000293),
 ('broadway', 0.59033768669372433),
 ('anna', 0.58778666490211906),
 ('peace', 0.58628403501758408),
 ('visually', 0.58539431926349916),
 ('morality', 0.58525821854876026),
 ('falk', 0.58525821854876026),
 ('growing', 0.58466653756587539),
 ('experiences', 0.58314628534561685),
 ('stood', 0.58314628534561685),
 ('touch', 0.58122926435596001),
 ('lives', 0.5810976767513224),
 ('kubrick', 0.58066919713325493),
 ('timing', 0.58047401805583243),
 ('expressions', 0.57981849525294216),
 ('struggles', 0.57981849525294216),
 ('authentic', 0.57848427223980559),
 ('helen', 0.57763429343810091),
 ('pre', 0.57700753064729182),
 ('quirky', 0.5753641449035618),
 ('young', 0.57531672344534313),
 ('inner', 0.57454143815209846),
 ('mexico', 0.57443087372056334),
 ('clint', 0.57380042292737909),
 ('sisters', 0.57286101468544337),
 ('realism', 0.57226528899949558),
 ('french', 0.5720692490067093),
 ('personalities', 0.5720692490067093),
 ('surprises', 0.57113222999698177),
 ('adventures', 0.57113222999698177),
 ('overcome', 0.5697681593994407),
 ('timothy', 0.56953322459276867),
 ('tales', 0.56909453188996639),
 ('war', 0.56843317302781682),
 ('civil', 0.5679840376059393),
 ('countries', 0.56737779327091187),
 ('streep', 0.56710645966458029),
 ('tradition', 0.56685345523565323),
 ('oliver', 0.56673325570428668),
 ('australia', 0.56580775818334383),
 ('understanding', 0.56531380905006046),
 ('players', 0.56509525370004821),
 ('knowing', 0.56489284503626647),
 ('rogers', 0.56421349718405212),
 ('suspenseful', 0.56368911332305849),
 ('variety', 0.56368911332305849),
 ('true', 0.56281525180810066),
 ('jr', 0.56220982311246936),
 ('psychological', 0.56108745854687891),
 ('sent', 0.55961578793542266),
 ('grand', 0.55961578793542266),
 ('branagh', 0.55961578793542266),
 ('reminiscent', 0.55961578793542266),
 ('performing', 0.55961578793542266),
 ('wealth', 0.55961578793542266),
 ('overwhelming', 0.55961578793542266),
 ('odds', 0.55961578793542266),
 ('brothers', 0.55891181043362848),
 ('howard', 0.55811089675600245),
 ('david', 0.55693122256475369),
 ('generation', 0.55628799784274796),
 ('grow', 0.55612538299565417),
 ('survival', 0.55594605904646033),
 ('mainstream', 0.55574731115750231),
 ('dick', 0.55431073570572953),
 ('charm', 0.55288175575407861),
 ('kirk', 0.55278982286502287),
 ('twists', 0.55244729845681018),
 ('gangster', 0.55206858230003986),
 ('jeff', 0.55179306225421365),
 ('family', 0.55116244510065526),
 ('tend', 0.55053307336110335),
 ('thanks', 0.55049088015842218),
 ('world', 0.54744234723432639),
 ('sutherland', 0.54743536937855164),
 ('life', 0.54695514434959924),
 ('disc', 0.54654370636806993),
 ('bug', 0.54654370636806993),
 ('tribute', 0.5455111817538808),
 ('europe', 0.54522705048332309),
 ('sacrifice', 0.54430155296238014),
 ('color', 0.54405127139431109),
 ('superior', 0.54333490233128523),
 ('york', 0.54318235866536513),
 ('pulls', 0.54266622962164945),
 ('jackson', 0.54232429082536171),
 ('hearts', 0.54232429082536171),
 ('enjoy', 0.54124285135906114),
 ('redemption', 0.54056759296472823),
 ('madness', 0.540384426007535),
 ('stands', 0.5389965007326869),
 ('trial', 0.5389965007326869),
 ('greek', 0.5389965007326869),
 ('hamilton', 0.5389965007326869),
 ('each', 0.5388212312554177),
 ('faithful', 0.53773307668591508),
 ('received', 0.5372768098531604),
 ('documentaries', 0.53714293208336406),
 ('jealous', 0.53714293208336406),
 ('different', 0.53709860682460819),
 ('describes', 0.53680111016925136),
 ('shorts', 0.53596159703753288),
 ('brilliance', 0.53551823635636209),
 ('mountains', 0.53492317534505118),
 ('share', 0.53408248593025787),
 ('dealt', 0.53408248593025787),
 ('providing', 0.53329847961804933),
 ('explore', 0.53329847961804933),
 ('series', 0.5325809226575603),
 ('fellow', 0.5323318289869543),
 ('loves', 0.53062825106217038),
 ('revolution', 0.53062825106217038),
 ('olivier', 0.53062825106217038),
 ('roman', 0.53062825106217038),
 ('century', 0.53002783074992665),
 ('musical', 0.52966871156747064),
 ('heroic', 0.52925932545482868),
 ('approach', 0.52806743020049673),
 ('ironically', 0.52806743020049673),
 ('temple', 0.52806743020049673),
 ('moves', 0.5279372642387119),
 ('gift', 0.52702030968597136),
 ('julie', 0.52609309589677911),
 ('tells', 0.52415107836314001),
 ('radio', 0.52394671172868779),
 ('uncle', 0.52354439617376536),
 ('union', 0.52324814376454787),
 ('deep', 0.52309571635780505),
 ('reminds', 0.52157841554225237),
 ('famous', 0.52118841080153722),
 ('jazz', 0.52053443789295151),
 ('dennis', 0.51987545928590861),
 ('epic', 0.51919387343650736),
 ('adult', 0.519167695083386),
 ('shows', 0.51915322220375304),
 ('performed', 0.5191244265806858),
 ('demons', 0.5191244265806858),
 ('discovered', 0.51879379341516751),
 ('eric', 0.51879379341516751),
 ('youth', 0.5185626062681431),
 ('human', 0.51851411224987087),
 ('tarzan', 0.51813827061227724),
 ('ourselves', 0.51794309153485463),
 ('wwii', 0.51758240622887042),
 ('passion', 0.5162164724008671),
 ('desire', 0.51607497965213445),
 ('pays', 0.51581316527702981),
 ('dirty', 0.51557622652458857),
 ('fox', 0.51557622652458857),
 ('sympathetic', 0.51546600332249293),
 ('symbolism', 0.51546600332249293),
 ('attitude', 0.51530993621331933),
 ('appearances', 0.51466440007315639),
 ('jeremy', 0.51466440007315639),
 ('fun', 0.51439068993048687),
 ('south', 0.51420972175023116),
 ('arrives', 0.51409894911095988),
 ('present', 0.51341965894303732),
 ('com', 0.51326167856387173),
 ('smile', 0.51265880484765169),
 ('alan', 0.51082562376599072),
 ('ring', 0.51082562376599072),
 ('visit', 0.51082562376599072),
 ('fits', 0.51082562376599072),
 ('provided', 0.51082562376599072),
 ('carter', 0.51082562376599072),
 ('aging', 0.51082562376599072),
 ('countryside', 0.51082562376599072),
 ('begins', 0.51015650363396647),
 ('success', 0.50900578704900468),
 ('japan', 0.50900578704900468),
 ('accurate', 0.50895471583017893),
 ('proud', 0.50800474742434931),
 ('daily', 0.5075946031845443),
 ('karloff', 0.50724780241810674),
 ('atmospheric', 0.50724780241810674),
 ('recently', 0.50714914903668207),
 ('fu', 0.50704490092608467),
 ('horrors', 0.50656122497953315),
 ('finding', 0.50637127341661037),
 ('lust', 0.5059356384717989),
 ('hitchcock', 0.50574947073413001),
 ('among', 0.50334004951332734),
 ('viewing', 0.50302139827440906),
 ('investigation', 0.50262885656181222),
 ('shining', 0.50262885656181222),
 ('duo', 0.5020919437972361),
 ('cameron', 0.5020919437972361),
 ('finds', 0.50128303100539795),
 ('contemporary', 0.50077528791248915),
 ('genuine', 0.50046283673044401),
 ('frightening', 0.49995595152908684),
 ('plays', 0.49975983848890226),
 ('age', 0.49941323171424595),
 ('position', 0.49899116611898781),
 ('continues', 0.49863035067217237),
 ('roles', 0.49839716550752178),
 ('james', 0.49837216269470402),
 ('individuals', 0.49824684155913052),
 ('brought', 0.49783842823917956),
 ('hilarious', 0.49714551986191058),
 ('brutal', 0.49681488669639234),
 ('appropriate', 0.49643688631389105),
 ('dance', 0.49581998314812048),
 ('league', 0.49578774640145024),
 ('helping', 0.49578774640145024),
 ('answers', 0.49578774640145024),
 ('stunts', 0.49561620510246196),
 ('traveling', 0.49532143723002542),
 ('thoroughly', 0.49414593456733524),
 ('depicted', 0.49317068852726992),
 ('combination', 0.49247648509779424),
 ('honor', 0.49247648509779424),
 ('differences', 0.49247648509779424),
 ('fully', 0.49213349075383811),
 ('tracy', 0.49159426183810306),
 ('battles', 0.49140753790888908),
 ('possibility', 0.49112055268665822),
 ('romance', 0.4901589869574316),
 ('initially', 0.49002249613622745),
 ('happy', 0.4898997500608791),
 ('crime', 0.48977221456815834),
 ('singing', 0.4893852925281213),
 ('especially', 0.48901267837860624),
 ('shakespeare', 0.48754793889664511),
 ('hugh', 0.48729512635579658),
 ('detail', 0.48609484250827351),
 ('julia', 0.48550781578170082),
 ('san', 0.48550781578170082),
 ('guide', 0.48550781578170082),
 ('desperation', 0.48550781578170082),
 ('companion', 0.48550781578170082),
 ('strongly', 0.48460242866688824),
 ('necessary', 0.48302334245403883),
 ('humanity', 0.48265474679929443),
 ('drama', 0.48221998493060503),
 ('nonetheless', 0.48183808689273838),
 ('intrigue', 0.48183808689273838),
 ('warming', 0.48183808689273838),
 ('cuba', 0.48183808689273838),
 ('planned', 0.47957308026188628),
 ('pictures', 0.47929937011921681),
 ('broadcast', 0.47849024312305422),
 ('nine', 0.47803580094299974),
 ('settings', 0.47743860773325364),
 ('history', 0.47732966933780852),
 ('ordinary', 0.47725880012690741),
 ('trade', 0.47692407209030935),
 ('official', 0.47608267532211779),
 ('primary', 0.47608267532211779),
 ('episode', 0.47529620261150429),
 ('role', 0.47520268270188676),
 ('spirit', 0.47477690799839323),
 ('grey', 0.47409361449726067),
 ('ways', 0.47323464982718205),
 ('cup', 0.47260441094579297),
 ('piano', 0.47260441094579297),
 ('familiar', 0.47241617565111949),
 ('sinister', 0.47198579044972683),
 ('reveal', 0.47171449364936496),
 ('max', 0.47150852042515579),
 ('dated', 0.47121648567094482),
 ('losing', 0.47000362924573563),
 ('discovery', 0.47000362924573563),
 ('vicious', 0.47000362924573563),
 ('genuinely', 0.46871413841586385),
 ('hatred', 0.46734051182625186),
 ('mistaken', 0.46702300110759781),
 ('dream', 0.46608972992459924),
 ('challenge', 0.46608972992459924),
 ('crisis', 0.46575733836428446),
 ('photographed', 0.46488852857896512),
 ('critics', 0.46430560813109778),
 ('bird', 0.46430560813109778),
 ('machines', 0.46430560813109778),
 ('born', 0.46411383518967209),
 ('detective', 0.4636633473511525),
 ('higher', 0.46328467899699055),
 ('remains', 0.46262352194811296),
 ('inevitable', 0.46262352194811296),
 ('soviet', 0.4618180446592961),
 ('ryan', 0.46134556650262099),
 ('african', 0.46112595521371813),
 ('smaller', 0.46081520319132935),
 ('techniques', 0.46052488529119184),
 ('information', 0.46034171833399862),
 ('deserved', 0.45999798712841444),
 ('lynch', 0.45953232937844013),
 ('spielberg', 0.45953232937844013),
 ('cynical', 0.45953232937844013),
 ('tour', 0.45953232937844013),
 ('francisco', 0.45953232937844013),
 ('struggle', 0.45911782160048453),
 ('language', 0.45902121257712653),
 ('visual', 0.45823514408822852),
 ('warner', 0.45724137763188427),
 ('social', 0.45720078250735313),
 ('reality', 0.45719346885019546),
 ('hidden', 0.45675840249571492),
 ('breaking', 0.45601738727099561),
 ('sometimes', 0.45563021171182794),
 ('modern', 0.45500247579345005),
 ('surfing', 0.45425527227759638),
 ('popular', 0.45410691533051023),
 ('surprised', 0.4534409399850382),
 ('follows', 0.45245361754408348),
 ('keeps', 0.45234869400701483),
 ('john', 0.4520909494482197),
 ('mixed', 0.45198512374305722),
 ('defeat', 0.45198512374305722),
 ('justice', 0.45142724367280018),
 ('treasure', 0.45083371313801535),
 ('presents', 0.44973793178615257),
 ('years', 0.44919197032104968),
 ('chief', 0.44895022004790319),
 ('shadows', 0.44802472252696035),
 ('closely', 0.44701411102103689),
 ('segments', 0.44701411102103689),
 ('lose', 0.44658335503763702),
 ('caine', 0.44628710262841953),
 ('caught', 0.44610275383999071),
 ('hamlet', 0.44558510189758965),
 ('chinese', 0.44507424620321018),
 ('welcome', 0.44438052435783792),
 ('birth', 0.44368632092836219),
 ('represents', 0.44320543609101143),
 ('puts', 0.44279106572085081),
 ('visuals', 0.44183275227903923),
 ('fame', 0.44183275227903923),
 ('closer', 0.44183275227903923),
 ('web', 0.44183275227903923),
 ('criminal', 0.4412745608048752),
 ('minor', 0.4409224199448939),
 ('jon', 0.44086703515908027),
 ('liked', 0.44074991514020723),
 ('restaurant', 0.44031183943833246),
 ('de', 0.43983275161237217),
 ('flaws', 0.43983275161237217),
 ('searching', 0.4393666597838457),
 ('rap', 0.43891304217570443),
 ('light', 0.43884433018199892),
 ('elizabeth', 0.43872232986464677),
 ('marry', 0.43861731542506488),
 ('learned', 0.43825493093115531),
 ('controversial', 0.43825493093115531),
 ('oz', 0.43825493093115531),
 ('slowly', 0.43785660389939979),
 ('comedic', 0.43721380642274466),
 ('wayne', 0.43721380642274466),
 ('thrilling', 0.43721380642274466),
 ('bridge', 0.43721380642274466),
 ('married', 0.43658501682196887),
 ('nazi', 0.4361020775700542),
 ('murder', 0.4353180712578455),
 ('physical', 0.4353180712578455),
 ('johnny', 0.43483971678806865),
 ('michelle', 0.43445264498141672),
 ('wallace', 0.43403848055222038),
 ('comedies', 0.43395706390247063),
 ('silent', 0.43395706390247063),
 ('played', 0.43387244114515305),
 ('international', 0.43363598507486073),
 ('vision', 0.43286408229627887),
 ('intelligent', 0.43196704885367099),
 ('shop', 0.43078291609245434),
 ('also', 0.43036720209769169),
 ('levels', 0.4302451371066513),
 ('miss', 0.43006426712153217),
 ('movement', 0.4295626596872249),
 ...]

In [53]:
# words most frequently seen in a review with a "NEGATIVE" label
list(reversed(pos_neg_ratios.most_common()))[0:30]


Out[53]:
[('boll', -4.0778152602708904),
 ('uwe', -3.9218753018711578),
 ('seagal', -3.3202501058581921),
 ('unwatchable', -3.0269848170580955),
 ('stinker', -2.9876839403711624),
 ('mst', -2.7753833211707968),
 ('incoherent', -2.7641396677532537),
 ('unfunny', -2.5545257844967644),
 ('waste', -2.4907515123361046),
 ('blah', -2.4475792789485005),
 ('horrid', -2.3715779644809971),
 ('pointless', -2.3451073877136341),
 ('atrocious', -2.3187369339642556),
 ('redeeming', -2.2667790015910296),
 ('prom', -2.2601040980178784),
 ('drivel', -2.2476029585766928),
 ('lousy', -2.2118080125207054),
 ('worst', -2.1930856334332267),
 ('laughable', -2.172468615469592),
 ('awful', -2.1385076866397488),
 ('poorly', -2.1326133844207011),
 ('wasting', -2.1178155545614512),
 ('remotely', -2.111046881095167),
 ('existent', -2.0024805005437076),
 ('boredom', -1.9241486572738005),
 ('miserably', -1.9216610938019989),
 ('sucks', -1.9166645809588516),
 ('uninspired', -1.9131499212248517),
 ('lame', -1.9117232884159072),
 ('insult', -1.9085323769376259)]

In [55]:
from bokeh.models import ColumnDataSource, LabelSet
from bokeh.plotting import figure, show, output_file
from bokeh.io import output_notebook
output_notebook()


Loading BokehJS ...

In [56]:
hist, edges = np.histogram(list(map(lambda x:x[1],pos_neg_ratios.most_common())), density=True, bins=100, normed=True)

p = figure(tools="pan,wheel_zoom,reset,save",
           toolbar_location="above",
           title="Word Positive/Negative Affinity Distribution")
p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color="#555555")
show(p)



In [57]:
frequency_frequency = Counter()

for word, cnt in total_counts.most_common():
    frequency_frequency[cnt] += 1

In [58]:
hist, edges = np.histogram(list(map(lambda x:x[1],frequency_frequency.most_common())), density=True, bins=100, normed=True)

p = figure(tools="pan,wheel_zoom,reset,save",
           toolbar_location="above",
           title="The frequency distribution of the words in our corpus")
p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color="#555555")
show(p)



In [59]:
min_count = 5
polarity = .05

review_vocab = set()
for review in reviews:
    for word in review.split(" "):
        review_vocab.add(word)
review_vocab = list(review_vocab)

label_vocab = set()
for label in labels:
    label_vocab.add(label)

label_vocab = list(label_vocab)

review_vocab_size = len(review_vocab)
label_vocab_size = len(label_vocab)

word2index = {}
for i, word in enumerate(review_vocab):
    word2index[word] = i

label2index = {}
for i, label in enumerate(label_vocab):
    label2index[label] = i
    
review_counter = Counter()

In [65]:
total_counts = Counter()
for review in reviews:
    for word in review.split(" "):
            total_counts[word] += 1

In [62]:
pos_neg_ratios = Counter()

for term,cnt in list(total_counts.most_common()):
    if(cnt > 100):
        pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
        pos_neg_ratios[term] = pos_neg_ratio

for word,ratio in pos_neg_ratios.most_common():
    if(ratio > 1):
        pos_neg_ratios[word] = np.log(ratio)
    else:
        pos_neg_ratios[word] = -np.log((1 / (ratio+0.01)))

In [64]:
pos_neg_ratios['the']


Out[64]:
0.05902269426102881

In [ ]:


In [122]:
import time
import sys

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1,
                min_count = 5, polarity = .05):
       
        np.random.seed(1)
    
        self.pre_process_data(reviews, min_count, polarity)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self,reviews, min_count, polarity):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
    
        self.total_counts = Counter()                
        self.pos_neg_ratios = Counter()
        self.positive_counts = Counter()
        self.negative_counts = Counter()
        
        for i in range(len(reviews)):
            if(labels[i] == 'POSITIVE'):
                for word in reviews[i].split(" "):
                    self.positive_counts[word] += 1
                    self.total_counts[word] += 1
            else:
                for word in reviews[i].split(" "):
                    self.negative_counts[word] += 1
                    self.total_counts[word] += 1
                    
        for term,cnt in list(self.total_counts.most_common()):
            if(cnt > 50):
                pos_neg_ratio = self.positive_counts[term] / float(self.negative_counts[term]+1)
                self.pos_neg_ratios[term] = pos_neg_ratio
        
        for word,ratio in self.pos_neg_ratios.most_common():
            if(ratio > 1):
                self.pos_neg_ratios[word] = np.log(ratio)
            else:
                self.pos_neg_ratios[word] = -np.log((1 / (ratio+0.01)))

        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            if (self.total_counts[word] >= min_count) & \
                (abs(self.pos_neg_ratios[word] >= polarity)):
                self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
        self.layer_1 = np.zeros((1,hidden_nodes))
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            self.layer_0[0][self.word2index[word]] = 1

    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def train(self, training_reviews_raw, training_labels):
        
        training_reviews = list()
        for review in training_reviews_raw:
            indices = set()
            for word in review.split(" "):
                if(word in self.word2index.keys()):
                    indices.add(self.word2index[word])
            training_reviews.append(list(indices))
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer

            # Hidden layer
#             layer_1 = self.layer_0.dot(self.weights_0_1)
            self.layer_1 *= 0
            for index in review:
                self.layer_1 += self.weights_0_1[index]
            
            # Output layer
            layer_2 = self.sigmoid(self.layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # Update the weights
            self.weights_1_2 -= self.layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            
            for index in review:
                self.weights_0_1[index] -= layer_1_delta[0] * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
        
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer


        # Hidden layer
        self.layer_1 *= 0
        unique_indices = set()
        for word in review.lower().split(" "):
            if word in self.word2index.keys():
                unique_indices.add(self.word2index[word])
        for index in unique_indices:
            self.layer_1 += self.weights_0_1[index]
        
        # Output layer
        layer_2 = self.sigmoid(self.layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [125]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1, min_count = 20, polarity = .05)

In [126]:
len(mlp.word2index)


Out[126]:
3733

In [127]:
word2index = {}
for i, word in enumerate(mlp.review_vocab):
    if (mlp.total_counts[word] >= 100) & \
        (abs(mlp.pos_neg_ratios[word] >= .2)):
        word2index[word] = i
len(word2index)


Out[127]:
1672

In [128]:
mlp.train(reviews[:-1000],labels[:-1000])


Progress:99.9% Speed(reviews/sec):1249. #Correct:17574 #Trained:24000 Training Accuracy:73.2%

In [129]:
mlp.test(reviews[-1000:],labels[-1000:])


Progress:99.9% Speed(reviews/sec):1015.% #Correct:727 #Tested:1000 Testing Accuracy:72.7%

In [ ]:


In [ ]: