Sentiment Classification & How To "Frame Problems" for a Neural Network

by Andrew Trask

What You Should Already Know

  • neural networks, forward and back-propagation
  • stochastic gradient descent
  • mean squared error
  • and train/test splits

Where to Get Help if You Need it

  • Re-watch previous Udacity Lectures
  • Leverage the recommended Course Reading Material - Grokking Deep Learning (40% Off: traskud17)
  • Shoot me a tweet @iamtrask

Tutorial Outline:

  • Intro: The Importance of "Framing a Problem"
  • Curate a Dataset
  • Developing a "Predictive Theory"
  • PROJECT 1: Quick Theory Validation
  • Transforming Text to Numbers
  • PROJECT 2: Creating the Input/Output Data
  • Putting it all together in a Neural Network
  • PROJECT 3: Building our Neural Network
  • Understanding Neural Noise
  • PROJECT 4: Making Learning Faster by Reducing Noise
  • Analyzing Inefficiencies in our Network
  • PROJECT 5: Making our Network Train and Run Faster
  • Further Noise Reduction
  • PROJECT 6: Reducing Noise by Strategically Reducing the Vocabulary
  • Analysis: What's going on in the weights?

Lesson: Curate a Dataset


In [1]:
def pretty_print_review_and_label(i):
    print(labels[i] + "\t:\t" + reviews[i][:80] + "...")

g = open('reviews.txt','r') # What we know!
reviews = list(map(lambda x:x[:-1],g.readlines()))
g.close()

g = open('labels.txt','r') # What we WANT to know!
labels = list(map(lambda x:x[:-1].upper(),g.readlines()))
g.close()

In [2]:
len(reviews)


Out[2]:
25000

In [3]:
reviews[0]


Out[3]:
'bromwell high is a cartoon comedy . it ran at the same time as some other programs about school life  such as  teachers  . my   years in the teaching profession lead me to believe that bromwell high  s satire is much closer to reality than is  teachers  . the scramble to survive financially  the insightful students who can see right through their pathetic teachers  pomp  the pettiness of the whole situation  all remind me of the schools i knew and their students . when i saw the episode in which a student repeatedly tried to burn down the school  i immediately recalled . . . . . . . . . at . . . . . . . . . . high . a classic line inspector i  m here to sack one of your teachers . student welcome to bromwell high . i expect that many adults of my age think that bromwell high is far fetched . what a pity that it isn  t   '

In [4]:
labels[0]


Out[4]:
'POSITIVE'

Lesson: Develop a Predictive Theory


In [5]:
print("labels.txt \t : \t reviews.txt\n")
pretty_print_review_and_label(2137)
pretty_print_review_and_label(12816)
pretty_print_review_and_label(6267)
pretty_print_review_and_label(21934)
pretty_print_review_and_label(5297)
pretty_print_review_and_label(4998)


labels.txt 	 : 	 reviews.txt

NEGATIVE	:	this movie is terrible but it has some good effects .  ...
POSITIVE	:	adrian pasdar is excellent is this film . he makes a fascinating woman .  ...
NEGATIVE	:	comment this movie is impossible . is terrible  very improbable  bad interpretat...
POSITIVE	:	excellent episode movie ala pulp fiction .  days   suicides . it doesnt get more...
NEGATIVE	:	if you haven  t seen this  it  s terrible . it is pure trash . i saw this about ...
POSITIVE	:	this schiffer guy is a real genius  the movie is of excellent quality and both e...

Project 1: Quick Theory Validation


In [6]:
from collections import Counter
import numpy as np

In [7]:
positive_counts = Counter()
negative_counts = Counter()
total_counts = Counter()

In [8]:
for i in range(len(reviews)):
    if(labels[i] == 'POSITIVE'):
        for word in reviews[i].split(" "):
            positive_counts[word] += 1
            total_counts[word] += 1
    else:
        for word in reviews[i].split(" "):
            negative_counts[word] += 1
            total_counts[word] += 1

In [9]:
positive_counts.most_common()


Out[9]:
[('', 550468),
 ('the', 173324),
 ('.', 159654),
 ('and', 89722),
 ('a', 83688),
 ('of', 76855),
 ('to', 66746),
 ('is', 57245),
 ('in', 50215),
 ('br', 49235),
 ('it', 48025),
 ('i', 40743),
 ('that', 35630),
 ('this', 35080),
 ('s', 33815),
 ('as', 26308),
 ('with', 23247),
 ('for', 22416),
 ('was', 21917),
 ('film', 20937),
 ('but', 20822),
 ('movie', 19074),
 ('his', 17227),
 ('on', 17008),
 ('you', 16681),
 ('he', 16282),
 ('are', 14807),
 ('not', 14272),
 ('t', 13720),
 ('one', 13655),
 ('have', 12587),
 ('be', 12416),
 ('by', 11997),
 ('all', 11942),
 ('who', 11464),
 ('an', 11294),
 ('at', 11234),
 ('from', 10767),
 ('her', 10474),
 ('they', 9895),
 ('has', 9186),
 ('so', 9154),
 ('like', 9038),
 ('about', 8313),
 ('very', 8305),
 ('out', 8134),
 ('there', 8057),
 ('she', 7779),
 ('what', 7737),
 ('or', 7732),
 ('good', 7720),
 ('more', 7521),
 ('when', 7456),
 ('some', 7441),
 ('if', 7285),
 ('just', 7152),
 ('can', 7001),
 ('story', 6780),
 ('time', 6515),
 ('my', 6488),
 ('great', 6419),
 ('well', 6405),
 ('up', 6321),
 ('which', 6267),
 ('their', 6107),
 ('see', 6026),
 ('also', 5550),
 ('we', 5531),
 ('really', 5476),
 ('would', 5400),
 ('will', 5218),
 ('me', 5167),
 ('had', 5148),
 ('only', 5137),
 ('him', 5018),
 ('even', 4964),
 ('most', 4864),
 ('other', 4858),
 ('were', 4782),
 ('first', 4755),
 ('than', 4736),
 ('much', 4685),
 ('its', 4622),
 ('no', 4574),
 ('into', 4544),
 ('people', 4479),
 ('best', 4319),
 ('love', 4301),
 ('get', 4272),
 ('how', 4213),
 ('life', 4199),
 ('been', 4189),
 ('because', 4079),
 ('way', 4036),
 ('do', 3941),
 ('made', 3823),
 ('films', 3813),
 ('them', 3805),
 ('after', 3800),
 ('many', 3766),
 ('two', 3733),
 ('too', 3659),
 ('think', 3655),
 ('movies', 3586),
 ('characters', 3560),
 ('character', 3514),
 ('don', 3468),
 ('man', 3460),
 ('show', 3432),
 ('watch', 3424),
 ('seen', 3414),
 ('then', 3358),
 ('little', 3341),
 ('still', 3340),
 ('make', 3303),
 ('could', 3237),
 ('never', 3226),
 ('being', 3217),
 ('where', 3173),
 ('does', 3069),
 ('over', 3017),
 ('any', 3002),
 ('while', 2899),
 ('know', 2833),
 ('did', 2790),
 ('years', 2758),
 ('here', 2740),
 ('ever', 2734),
 ('end', 2696),
 ('these', 2694),
 ('such', 2590),
 ('real', 2568),
 ('scene', 2567),
 ('back', 2547),
 ('those', 2485),
 ('though', 2475),
 ('off', 2463),
 ('new', 2458),
 ('your', 2453),
 ('go', 2440),
 ('acting', 2437),
 ('plot', 2432),
 ('world', 2429),
 ('scenes', 2427),
 ('say', 2414),
 ('through', 2409),
 ('makes', 2390),
 ('better', 2381),
 ('now', 2368),
 ('work', 2346),
 ('young', 2343),
 ('old', 2311),
 ('ve', 2307),
 ('find', 2272),
 ('both', 2248),
 ('before', 2177),
 ('us', 2162),
 ('again', 2158),
 ('series', 2153),
 ('quite', 2143),
 ('something', 2135),
 ('cast', 2133),
 ('should', 2121),
 ('part', 2098),
 ('always', 2088),
 ('lot', 2087),
 ('another', 2075),
 ('actors', 2047),
 ('director', 2040),
 ('family', 2032),
 ('between', 2016),
 ('own', 2016),
 ('m', 1998),
 ('may', 1997),
 ('same', 1972),
 ('role', 1967),
 ('watching', 1966),
 ('every', 1954),
 ('funny', 1953),
 ('doesn', 1935),
 ('performance', 1928),
 ('few', 1918),
 ('bad', 1907),
 ('look', 1900),
 ('re', 1884),
 ('why', 1855),
 ('things', 1849),
 ('times', 1832),
 ('big', 1815),
 ('however', 1795),
 ('actually', 1790),
 ('action', 1789),
 ('going', 1783),
 ('bit', 1757),
 ('comedy', 1742),
 ('down', 1740),
 ('music', 1738),
 ('must', 1728),
 ('take', 1709),
 ('saw', 1692),
 ('long', 1690),
 ('right', 1688),
 ('fun', 1686),
 ('fact', 1684),
 ('excellent', 1683),
 ('around', 1674),
 ('didn', 1672),
 ('without', 1671),
 ('thing', 1662),
 ('thought', 1639),
 ('got', 1635),
 ('each', 1630),
 ('day', 1614),
 ('feel', 1597),
 ('seems', 1596),
 ('come', 1594),
 ('done', 1586),
 ('beautiful', 1580),
 ('especially', 1572),
 ('played', 1571),
 ('almost', 1566),
 ('want', 1562),
 ('yet', 1556),
 ('give', 1553),
 ('pretty', 1549),
 ('last', 1543),
 ('since', 1519),
 ('different', 1504),
 ('although', 1501),
 ('gets', 1490),
 ('true', 1487),
 ('interesting', 1481),
 ('job', 1470),
 ('enough', 1455),
 ('our', 1454),
 ('shows', 1447),
 ('horror', 1441),
 ('woman', 1439),
 ('tv', 1400),
 ('probably', 1398),
 ('father', 1395),
 ('original', 1393),
 ('girl', 1390),
 ('point', 1379),
 ('plays', 1378),
 ('wonderful', 1372),
 ('far', 1358),
 ('course', 1358),
 ('john', 1350),
 ('rather', 1340),
 ('isn', 1328),
 ('ll', 1326),
 ('later', 1324),
 ('dvd', 1324),
 ('whole', 1310),
 ('war', 1310),
 ('d', 1307),
 ('found', 1306),
 ('away', 1306),
 ('screen', 1305),
 ('nothing', 1300),
 ('year', 1297),
 ('once', 1296),
 ('hard', 1294),
 ('together', 1280),
 ('set', 1277),
 ('am', 1277),
 ('having', 1266),
 ('making', 1265),
 ('place', 1263),
 ('might', 1260),
 ('comes', 1260),
 ('sure', 1253),
 ('american', 1248),
 ('play', 1245),
 ('kind', 1244),
 ('perfect', 1242),
 ('takes', 1242),
 ('performances', 1237),
 ('himself', 1230),
 ('worth', 1221),
 ('everyone', 1221),
 ('anyone', 1214),
 ('actor', 1203),
 ('three', 1201),
 ('wife', 1196),
 ('classic', 1192),
 ('goes', 1186),
 ('ending', 1178),
 ('version', 1168),
 ('star', 1149),
 ('enjoy', 1146),
 ('book', 1142),
 ('nice', 1132),
 ('everything', 1128),
 ('during', 1124),
 ('put', 1118),
 ('seeing', 1111),
 ('least', 1102),
 ('house', 1100),
 ('high', 1095),
 ('watched', 1094),
 ('loved', 1087),
 ('men', 1087),
 ('night', 1082),
 ('anything', 1075),
 ('believe', 1071),
 ('guy', 1071),
 ('top', 1063),
 ('amazing', 1058),
 ('hollywood', 1056),
 ('looking', 1053),
 ('main', 1044),
 ('definitely', 1043),
 ('gives', 1031),
 ('home', 1029),
 ('seem', 1028),
 ('episode', 1023),
 ('audience', 1020),
 ('sense', 1020),
 ('truly', 1017),
 ('special', 1011),
 ('second', 1009),
 ('short', 1009),
 ('fan', 1009),
 ('mind', 1005),
 ('human', 1001),
 ('recommend', 999),
 ('full', 996),
 ('black', 995),
 ('help', 991),
 ('along', 989),
 ('trying', 987),
 ('small', 986),
 ('death', 985),
 ('friends', 981),
 ('remember', 974),
 ('often', 970),
 ('said', 966),
 ('favorite', 962),
 ('heart', 959),
 ('early', 957),
 ('left', 956),
 ('until', 955),
 ('script', 954),
 ('let', 954),
 ('maybe', 937),
 ('today', 936),
 ('live', 934),
 ('less', 934),
 ('moments', 933),
 ('others', 929),
 ('brilliant', 926),
 ('shot', 925),
 ('liked', 923),
 ('become', 916),
 ('won', 915),
 ('used', 910),
 ('style', 907),
 ('mother', 895),
 ('lives', 894),
 ('came', 893),
 ('stars', 890),
 ('cinema', 889),
 ('looks', 885),
 ('perhaps', 884),
 ('read', 882),
 ('enjoyed', 879),
 ('boy', 875),
 ('drama', 873),
 ('highly', 871),
 ('given', 870),
 ('playing', 867),
 ('use', 864),
 ('next', 859),
 ('women', 858),
 ('fine', 857),
 ('effects', 856),
 ('kids', 854),
 ('entertaining', 853),
 ('need', 852),
 ('line', 850),
 ('works', 848),
 ('someone', 847),
 ('mr', 836),
 ('simply', 835),
 ('picture', 833),
 ('children', 833),
 ('face', 831),
 ('keep', 831),
 ('friend', 831),
 ('dark', 830),
 ('overall', 828),
 ('certainly', 828),
 ('minutes', 827),
 ('wasn', 824),
 ('history', 822),
 ('finally', 820),
 ('couple', 816),
 ('against', 815),
 ('son', 809),
 ('understand', 808),
 ('lost', 807),
 ('michael', 805),
 ('else', 801),
 ('throughout', 798),
 ('fans', 797),
 ('city', 792),
 ('reason', 789),
 ('written', 787),
 ('production', 787),
 ('several', 784),
 ('school', 783),
 ('based', 781),
 ('rest', 781),
 ('try', 780),
 ('dead', 776),
 ('hope', 775),
 ('strong', 768),
 ('white', 765),
 ('tell', 759),
 ('itself', 758),
 ('half', 753),
 ('person', 749),
 ('sometimes', 746),
 ('past', 744),
 ('start', 744),
 ('genre', 743),
 ('beginning', 739),
 ('final', 739),
 ('town', 738),
 ('art', 734),
 ('humor', 732),
 ('game', 732),
 ('yes', 731),
 ('idea', 731),
 ('late', 730),
 ('becomes', 729),
 ('despite', 729),
 ('able', 726),
 ('case', 726),
 ('money', 723),
 ('child', 721),
 ('completely', 721),
 ('side', 719),
 ('camera', 716),
 ('getting', 714),
 ('instead', 712),
 ('soon', 702),
 ('under', 700),
 ('viewer', 699),
 ('age', 697),
 ('days', 696),
 ('stories', 696),
 ('felt', 694),
 ('simple', 694),
 ('roles', 693),
 ('video', 688),
 ('name', 683),
 ('either', 683),
 ('doing', 677),
 ('turns', 674),
 ('wants', 671),
 ('close', 671),
 ('title', 669),
 ('wrong', 668),
 ('went', 666),
 ('james', 665),
 ('evil', 659),
 ('budget', 657),
 ('episodes', 657),
 ('relationship', 655),
 ('fantastic', 653),
 ('piece', 653),
 ('david', 651),
 ('turn', 648),
 ('murder', 646),
 ('parts', 645),
 ('brother', 644),
 ('absolutely', 643),
 ('head', 643),
 ('experience', 642),
 ('eyes', 641),
 ('sex', 638),
 ('direction', 637),
 ('called', 637),
 ('directed', 636),
 ('lines', 634),
 ('behind', 633),
 ('sort', 632),
 ('actress', 631),
 ('lead', 630),
 ('oscar', 628),
 ('including', 627),
 ('example', 627),
 ('known', 625),
 ('musical', 625),
 ('chance', 621),
 ('score', 620),
 ('already', 619),
 ('feeling', 619),
 ('hit', 619),
 ('voice', 615),
 ('moment', 612),
 ('living', 612),
 ('low', 610),
 ('supporting', 610),
 ('ago', 609),
 ('themselves', 608),
 ('reality', 605),
 ('hilarious', 605),
 ('jack', 604),
 ('told', 603),
 ('hand', 601),
 ('quality', 600),
 ('moving', 600),
 ('dialogue', 600),
 ('song', 599),
 ('happy', 599),
 ('matter', 598),
 ('paul', 598),
 ('light', 594),
 ('future', 593),
 ('entire', 592),
 ('finds', 591),
 ('gave', 589),
 ('laugh', 587),
 ('released', 586),
 ('expect', 584),
 ('fight', 581),
 ('particularly', 580),
 ('cinematography', 579),
 ('police', 579),
 ('whose', 578),
 ('type', 578),
 ('sound', 578),
 ('view', 573),
 ('enjoyable', 573),
 ('number', 572),
 ('romantic', 572),
 ('husband', 572),
 ('daughter', 572),
 ('documentary', 571),
 ('self', 570),
 ('superb', 569),
 ('modern', 569),
 ('took', 569),
 ('robert', 569),
 ('mean', 566),
 ('shown', 563),
 ('coming', 561),
 ('important', 560),
 ('king', 559),
 ('leave', 559),
 ('change', 558),
 ('somewhat', 555),
 ('wanted', 555),
 ('tells', 554),
 ('events', 552),
 ('run', 552),
 ('career', 552),
 ('country', 552),
 ('heard', 550),
 ('season', 550),
 ('greatest', 549),
 ('girls', 549),
 ('etc', 547),
 ('care', 546),
 ('starts', 545),
 ('english', 542),
 ('killer', 541),
 ('tale', 540),
 ('guys', 540),
 ('totally', 540),
 ('animation', 540),
 ('usual', 539),
 ('miss', 535),
 ('opinion', 535),
 ('easy', 531),
 ('violence', 531),
 ('songs', 530),
 ('british', 528),
 ('says', 526),
 ('realistic', 525),
 ('writing', 524),
 ('writer', 522),
 ('act', 522),
 ('comic', 521),
 ('thriller', 519),
 ('television', 517),
 ('power', 516),
 ('ones', 515),
 ('kid', 514),
 ('york', 513),
 ('novel', 513),
 ('alone', 512),
 ('problem', 512),
 ('attention', 509),
 ('involved', 508),
 ('kill', 507),
 ('extremely', 507),
 ('seemed', 506),
 ('hero', 505),
 ('french', 505),
 ('rock', 504),
 ('stuff', 501),
 ('wish', 499),
 ('begins', 498),
 ('taken', 497),
 ('sad', 497),
 ('ways', 496),
 ('richard', 495),
 ('knows', 494),
 ('atmosphere', 493),
 ('similar', 491),
 ('surprised', 491),
 ('taking', 491),
 ('car', 491),
 ('george', 490),
 ('perfectly', 490),
 ('across', 489),
 ('team', 489),
 ('eye', 489),
 ('sequence', 489),
 ('room', 488),
 ('due', 488),
 ('among', 488),
 ('serious', 488),
 ('powerful', 488),
 ('strange', 487),
 ('order', 487),
 ('cannot', 487),
 ('b', 487),
 ('beauty', 486),
 ('famous', 485),
 ('happened', 484),
 ('tries', 484),
 ('herself', 484),
 ('myself', 484),
 ('class', 483),
 ('four', 482),
 ('cool', 481),
 ('release', 479),
 ('anyway', 479),
 ('theme', 479),
 ('opening', 478),
 ('entertainment', 477),
 ('slow', 475),
 ('ends', 475),
 ('unique', 475),
 ('exactly', 475),
 ('easily', 474),
 ('level', 474),
 ('o', 474),
 ('red', 474),
 ('interest', 472),
 ('happen', 471),
 ('crime', 470),
 ('viewing', 468),
 ('sets', 467),
 ('memorable', 467),
 ('stop', 466),
 ('group', 466),
 ('problems', 463),
 ('dance', 463),
 ('working', 463),
 ('sister', 463),
 ('message', 463),
 ('knew', 462),
 ('mystery', 461),
 ('nature', 461),
 ('bring', 460),
 ('believable', 459),
 ('thinking', 459),
 ('brought', 459),
 ('mostly', 458),
 ('disney', 457),
 ('couldn', 457),
 ('society', 456),
 ('lady', 455),
 ('within', 455),
 ('blood', 454),
 ('parents', 453),
 ('upon', 453),
 ('viewers', 453),
 ('meets', 452),
 ('form', 452),
 ('peter', 452),
 ('tom', 452),
 ('usually', 452),
 ('soundtrack', 452),
 ('local', 450),
 ('certain', 448),
 ('follow', 448),
 ('whether', 447),
 ('possible', 446),
 ('emotional', 445),
 ('killed', 444),
 ('above', 444),
 ('de', 444),
 ('god', 443),
 ('middle', 443),
 ('needs', 442),
 ('happens', 442),
 ('flick', 442),
 ('masterpiece', 441),
 ('period', 440),
 ('major', 440),
 ('named', 439),
 ('haven', 439),
 ('particular', 438),
 ('th', 438),
 ('earth', 437),
 ('feature', 437),
 ('stand', 436),
 ('words', 435),
 ('typical', 435),
 ('elements', 433),
 ('obviously', 433),
 ('romance', 431),
 ('jane', 430),
 ('yourself', 427),
 ('showing', 427),
 ('brings', 426),
 ('fantasy', 426),
 ('guess', 423),
 ('america', 423),
 ('unfortunately', 422),
 ('huge', 422),
 ('indeed', 421),
 ('running', 421),
 ('talent', 420),
 ('stage', 419),
 ('started', 418),
 ('leads', 417),
 ('sweet', 417),
 ('japanese', 417),
 ('poor', 416),
 ('deal', 416),
 ('incredible', 413),
 ('personal', 413),
 ('fast', 412),
 ('became', 410),
 ('deep', 410),
 ('hours', 409),
 ('giving', 408),
 ('nearly', 408),
 ('dream', 408),
 ('clearly', 407),
 ('turned', 407),
 ('obvious', 406),
 ('near', 406),
 ('cut', 405),
 ('surprise', 405),
 ('era', 404),
 ('body', 404),
 ('hour', 403),
 ('female', 403),
 ('five', 403),
 ('note', 399),
 ('learn', 398),
 ('truth', 398),
 ('except', 397),
 ('feels', 397),
 ('match', 397),
 ('tony', 397),
 ('filmed', 394),
 ('clear', 394),
 ('complete', 394),
 ('street', 393),
 ('eventually', 393),
 ('keeps', 393),
 ('older', 393),
 ('lots', 393),
 ('buy', 392),
 ('william', 391),
 ('stewart', 391),
 ('fall', 390),
 ('joe', 390),
 ('meet', 390),
 ('unlike', 389),
 ('talking', 389),
 ('shots', 389),
 ('rating', 389),
 ('difficult', 389),
 ('dramatic', 388),
 ('means', 388),
 ('situation', 386),
 ('wonder', 386),
 ('present', 386),
 ('appears', 386),
 ('subject', 386),
 ('comments', 385),
 ('general', 383),
 ('sequences', 383),
 ('lee', 383),
 ('points', 382),
 ('earlier', 382),
 ('gone', 379),
 ('check', 379),
 ('suspense', 378),
 ('recommended', 378),
 ('ten', 378),
 ('third', 377),
 ('business', 377),
 ('talk', 375),
 ('leaves', 375),
 ('beyond', 375),
 ('portrayal', 374),
 ('beautifully', 373),
 ('single', 372),
 ('bill', 372),
 ('plenty', 371),
 ('word', 371),
 ('whom', 370),
 ('falls', 370),
 ('scary', 369),
 ('non', 369),
 ('figure', 369),
 ('battle', 369),
 ('using', 368),
 ('return', 368),
 ('doubt', 367),
 ('add', 367),
 ('hear', 366),
 ('solid', 366),
 ('success', 366),
 ('jokes', 365),
 ('oh', 365),
 ('touching', 365),
 ('political', 365),
 ('hell', 364),
 ('awesome', 364),
 ('boys', 364),
 ('sexual', 362),
 ('recently', 362),
 ('dog', 362),
 ('please', 361),
 ('wouldn', 361),
 ('straight', 361),
 ('features', 361),
 ('forget', 360),
 ('setting', 360),
 ('lack', 360),
 ('married', 359),
 ('mark', 359),
 ('social', 357),
 ('interested', 356),
 ('adventure', 356),
 ('actual', 355),
 ('terrific', 355),
 ('sees', 355),
 ('brothers', 355),
 ('move', 354),
 ('call', 354),
 ('various', 353),
 ('theater', 353),
 ('dr', 353),
 ('animated', 352),
 ('western', 351),
 ('baby', 350),
 ('space', 350),
 ('leading', 348),
 ('disappointed', 348),
 ('portrayed', 346),
 ('aren', 346),
 ('screenplay', 345),
 ('smith', 345),
 ('towards', 344),
 ('hate', 344),
 ('noir', 343),
 ('outstanding', 342),
 ('decent', 342),
 ('kelly', 342),
 ('directors', 341),
 ('journey', 341),
 ('none', 340),
 ('looked', 340),
 ('effective', 340),
 ('storyline', 339),
 ('caught', 339),
 ('sci', 339),
 ('fi', 339),
 ('cold', 339),
 ('mary', 339),
 ('rich', 338),
 ('charming', 338),
 ('popular', 337),
 ('rare', 337),
 ('manages', 337),
 ('harry', 337),
 ('spirit', 336),
 ('appreciate', 335),
 ('open', 335),
 ('moves', 334),
 ('basically', 334),
 ('acted', 334),
 ('inside', 333),
 ('boring', 333),
 ('century', 333),
 ('mention', 333),
 ('deserves', 333),
 ('subtle', 333),
 ('pace', 333),
 ('familiar', 332),
 ('background', 332),
 ('ben', 331),
 ('creepy', 330),
 ('supposed', 330),
 ('secret', 329),
 ('die', 328),
 ('jim', 328),
 ('question', 327),
 ('effect', 327),
 ('natural', 327),
 ('impressive', 326),
 ('rate', 326),
 ('language', 326),
 ('saying', 325),
 ('intelligent', 325),
 ('telling', 324),
 ('realize', 324),
 ('material', 324),
 ('scott', 324),
 ('singing', 323),
 ('dancing', 322),
 ('visual', 321),
 ('adult', 321),
 ('imagine', 321),
 ('kept', 320),
 ('office', 320),
 ('uses', 319),
 ('pure', 318),
 ('wait', 318),
 ('stunning', 318),
 ('review', 317),
 ('previous', 317),
 ('copy', 317),
 ('seriously', 317),
 ('reading', 316),
 ('create', 316),
 ('hot', 316),
 ('created', 316),
 ('magic', 316),
 ('somehow', 316),
 ('stay', 315),
 ('attempt', 315),
 ('escape', 315),
 ('crazy', 315),
 ('air', 315),
 ('frank', 315),
 ('hands', 314),
 ('filled', 313),
 ('expected', 312),
 ('average', 312),
 ('surprisingly', 312),
 ('complex', 311),
 ('quickly', 310),
 ('successful', 310),
 ('studio', 310),
 ('plus', 309),
 ('male', 309),
 ('co', 307),
 ('images', 306),
 ('casting', 306),
 ('following', 306),
 ('minute', 306),
 ('exciting', 306),
 ('members', 305),
 ('follows', 305),
 ('themes', 305),
 ('german', 305),
 ('reasons', 305),
 ('e', 305),
 ('touch', 304),
 ('edge', 304),
 ('free', 304),
 ('cute', 304),
 ('genius', 304),
 ('outside', 303),
 ('reviews', 302),
 ('admit', 302),
 ('ok', 302),
 ('younger', 302),
 ('fighting', 301),
 ('odd', 301),
 ('master', 301),
 ('recent', 300),
 ('thanks', 300),
 ('break', 300),
 ('comment', 300),
 ('apart', 299),
 ('emotions', 298),
 ('lovely', 298),
 ('begin', 298),
 ('doctor', 297),
 ('party', 297),
 ('italian', 297),
 ('la', 296),
 ('missed', 296),
 ...]

In [10]:
pos_neg_ratios = Counter()

for term,cnt in list(total_counts.most_common()):
    if(cnt > 100):
        pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
        pos_neg_ratios[term] = pos_neg_ratio

for word,ratio in pos_neg_ratios.most_common():
    if(ratio > 1):
        pos_neg_ratios[word] = np.log(ratio)
    else:
        pos_neg_ratios[word] = -np.log((1 / (ratio+0.01)))

In [11]:
# words most frequently seen in a review with a "POSITIVE" label
pos_neg_ratios.most_common()


Out[11]:
[('edie', 4.6913478822291435),
 ('paulie', 4.0775374439057197),
 ('felix', 3.1527360223636558),
 ('polanski', 2.8233610476132043),
 ('matthau', 2.8067217286092401),
 ('victoria', 2.6810215287142909),
 ('mildred', 2.6026896854443837),
 ('gandhi', 2.5389738710582761),
 ('flawless', 2.451005098112319),
 ('superbly', 2.2600254785752498),
 ('perfection', 2.1594842493533721),
 ('astaire', 2.1400661634962708),
 ('captures', 2.0386195471595809),
 ('voight', 2.0301704926730531),
 ('wonderfully', 2.0218960560332353),
 ('powell', 1.9783454248084671),
 ('brosnan', 1.9547990964725592),
 ('lily', 1.9203768470501485),
 ('bakshi', 1.9029851043382795),
 ('lincoln', 1.9014583864844796),
 ('refreshing', 1.8551812956655511),
 ('breathtaking', 1.8481124057791867),
 ('bourne', 1.8478489358790986),
 ('lemmon', 1.8458266904983307),
 ('delightful', 1.8002701588959635),
 ('flynn', 1.7996646487351682),
 ('andrews', 1.7764919970972666),
 ('homer', 1.7692866133759964),
 ('beautifully', 1.7626953362841438),
 ('soccer', 1.7578579175523736),
 ('elvira', 1.7397031072720019),
 ('underrated', 1.7197859696029656),
 ('gripping', 1.7165360479904674),
 ('superb', 1.7091514458966952),
 ('delight', 1.6714733033535532),
 ('welles', 1.6677068205580761),
 ('sadness', 1.663505133704376),
 ('sinatra', 1.6389967146756448),
 ('touching', 1.637217476541176),
 ('timeless', 1.62924053973028),
 ('macy', 1.6211339521972916),
 ('unforgettable', 1.6177367152487956),
 ('favorites', 1.6158688027643908),
 ('stewart', 1.6119987332957739),
 ('sullivan', 1.6094379124341003),
 ('extraordinary', 1.6094379124341003),
 ('hartley', 1.6094379124341003),
 ('brilliantly', 1.5950491749820008),
 ('friendship', 1.5677652160335325),
 ('wonderful', 1.5645425925262093),
 ('palma', 1.5553706911638245),
 ('magnificent', 1.54663701119507),
 ('finest', 1.5462590108125689),
 ('jackie', 1.5439233053234738),
 ('ritter', 1.5404450409471491),
 ('tremendous', 1.5184661342283736),
 ('freedom', 1.5091151908062312),
 ('fantastic', 1.5048433868558566),
 ('terrific', 1.5026699370083942),
 ('noir', 1.493925025312256),
 ('sidney', 1.493925025312256),
 ('outstanding', 1.4910053152089213),
 ('pleasantly', 1.4894785973551214),
 ('mann', 1.4894785973551214),
 ('nancy', 1.488077055429833),
 ('marie', 1.4825711915553104),
 ('marvelous', 1.4739999415389962),
 ('excellent', 1.4647538505723599),
 ('ruth', 1.4596256342054401),
 ('stanwyck', 1.4412101187160054),
 ('widmark', 1.4350845252893227),
 ('splendid', 1.4271163556401458),
 ('chan', 1.423108334242607),
 ('exceptional', 1.4201959127955721),
 ('tender', 1.410986973710262),
 ('gentle', 1.4078005663408544),
 ('poignant', 1.4022947024663317),
 ('gem', 1.3932148039644643),
 ('amazing', 1.3919815802404802),
 ('chilling', 1.3862943611198906),
 ('fisher', 1.3862943611198906),
 ('davies', 1.3862943611198906),
 ('captivating', 1.3862943611198906),
 ('darker', 1.3652409519220583),
 ('april', 1.3499267169490159),
 ('kelly', 1.3461743673304654),
 ('blake', 1.3418425985490567),
 ('overlooked', 1.329135947279942),
 ('ralph', 1.32818673031261),
 ('bette', 1.3156767939059373),
 ('hoffman', 1.3150668518315229),
 ('cole', 1.3121863889661687),
 ('shines', 1.3049487216659381),
 ('powerful', 1.2999662776313934),
 ('notch', 1.2950456896547455),
 ('remarkable', 1.2883688239495823),
 ('pitt', 1.286210902562908),
 ('winters', 1.2833463918674481),
 ('vivid', 1.2762934659055623),
 ('gritty', 1.2757524867200667),
 ('giallo', 1.2745029551317739),
 ('portrait', 1.2704625455947689),
 ('innocence', 1.2694300209805796),
 ('psychiatrist', 1.2685113254635072),
 ('favorite', 1.2668956297860055),
 ('ensemble', 1.2656663733312759),
 ('stunning', 1.2622417124499117),
 ('burns', 1.259880436264232),
 ('garbo', 1.258954938743289),
 ('barbara', 1.2580400255962119),
 ('philip', 1.2527629684953681),
 ('panic', 1.2527629684953681),
 ('holly', 1.2527629684953681),
 ('carol', 1.2481440226390734),
 ('perfect', 1.246742480713785),
 ('appreciated', 1.2462482874741743),
 ('favourite', 1.2411123512753928),
 ('journey', 1.2367626271489269),
 ('rural', 1.235471471385307),
 ('bond', 1.2321436812926323),
 ('builds', 1.2305398317106577),
 ('brilliant', 1.2287554137664785),
 ('brooklyn', 1.2286654169163074),
 ('von', 1.225175011976539),
 ('recommended', 1.2163953243244932),
 ('unfolds', 1.2163953243244932),
 ('daniel', 1.20215296760895),
 ('perfectly', 1.1971931173405572),
 ('crafted', 1.1962507582320256),
 ('prince', 1.1939224684724346),
 ('troubled', 1.192138346678933),
 ('consequences', 1.1865810616140668),
 ('haunting', 1.1814999484738773),
 ('cinderella', 1.180052620608284),
 ('alexander', 1.1759989522835299),
 ('emotions', 1.1753049094563641),
 ('boxing', 1.1735135968412274),
 ('subtle', 1.1734135017508081),
 ('curtis', 1.1649873576129823),
 ('rare', 1.1566438362402944),
 ('loved', 1.1563661500586044),
 ('daughters', 1.1526795099383853),
 ('courage', 1.1438688802562305),
 ('dentist', 1.1426722784621401),
 ('highly', 1.1420208631618658),
 ('nominated', 1.1409146683587992),
 ('tony', 1.1397491942285991),
 ('draws', 1.1325138403437911),
 ('everyday', 1.1306150197542835),
 ('contrast', 1.1284652518177909),
 ('cried', 1.1213405397456659),
 ('fabulous', 1.1210851445201684),
 ('ned', 1.120591195386885),
 ('fay', 1.120591195386885),
 ('emma', 1.1184149159642893),
 ('sensitive', 1.113318436057805),
 ('smooth', 1.1089750757036563),
 ('dramas', 1.1080910326226534),
 ('today', 1.1050431789984001),
 ('helps', 1.1023091505494358),
 ('inspiring', 1.0986122886681098),
 ('jimmy', 1.0937696641923216),
 ('awesome', 1.0931328229034842),
 ('unique', 1.0881409888008142),
 ('tragic', 1.0871835928444868),
 ('intense', 1.0870514662670339),
 ('stellar', 1.0857088838322018),
 ('rival', 1.0822184788924332),
 ('provides', 1.0797081340289569),
 ('depression', 1.0782034170369026),
 ('shy', 1.0775588794702773),
 ('carrie', 1.076139432816051),
 ('blend', 1.0753554265038423),
 ('hank', 1.0736109864626924),
 ('diana', 1.0726368022648489),
 ('adorable', 1.0726368022648489),
 ('unexpected', 1.0722255334949147),
 ('achievement', 1.0668635903535293),
 ('bettie', 1.0663514264498881),
 ('happiness', 1.0632729222228008),
 ('glorious', 1.0608719606852626),
 ('davis', 1.0541605260972757),
 ('terrifying', 1.0525211814678428),
 ('beauty', 1.050410186850232),
 ('ideal', 1.0479685558493548),
 ('fears', 1.0467872208035236),
 ('hong', 1.0438040521731147),
 ('seasons', 1.0433496099930604),
 ('fascinating', 1.0414538748281612),
 ('carries', 1.0345904299031787),
 ('satisfying', 1.0321225473992768),
 ('definite', 1.0319209141694374),
 ('touched', 1.0296194171811581),
 ('greatest', 1.0248947127715422),
 ('creates', 1.0241097613701886),
 ('aunt', 1.023388867430522),
 ('walter', 1.022328983918479),
 ('spectacular', 1.0198314108149955),
 ('portrayal', 1.0189810189761024),
 ('ann', 1.0127808528183286),
 ('enterprise', 1.0116009116784799),
 ('musicals', 1.0096648026516135),
 ('deeply', 1.0094845087721023),
 ('incredible', 1.0061677561461084),
 ('mature', 1.0060195018402847),
 ('triumph', 0.99682959435816731),
 ('margaret', 0.99682959435816731),
 ('navy', 0.99493385919326827),
 ('harry', 0.99176919305006062),
 ('lucas', 0.990398704027877),
 ('sweet', 0.98966110487955483),
 ('joey', 0.98794672078059009),
 ('oscar', 0.98721905111049713),
 ('balance', 0.98649499054740353),
 ('warm', 0.98485340331145166),
 ('ages', 0.98449898190068863),
 ('guilt', 0.98082925301172619),
 ('glover', 0.98082925301172619),
 ('carrey', 0.98082925301172619),
 ('learns', 0.97881108885548895),
 ('unusual', 0.97788374278196932),
 ('sons', 0.97777581552483595),
 ('complex', 0.97761897738147796),
 ('essence', 0.97753435711487369),
 ('brazil', 0.9769153536905899),
 ('widow', 0.97650959186720987),
 ('solid', 0.97537964824416146),
 ('beautiful', 0.97326301262841053),
 ('holmes', 0.97246100334120955),
 ('awe', 0.97186058302896583),
 ('vhs', 0.97116734209998934),
 ('eerie', 0.97116734209998934),
 ('lonely', 0.96873720724669754),
 ('grim', 0.96873720724669754),
 ('sport', 0.96825047080486615),
 ('debut', 0.96508089604358704),
 ('destiny', 0.96343751029985703),
 ('thrillers', 0.96281074750904794),
 ('tears', 0.95977584381389391),
 ('rose', 0.95664202739772253),
 ('feelings', 0.95551144502743635),
 ('ginger', 0.95551144502743635),
 ('winning', 0.95471810900804055),
 ('stanley', 0.95387344302319799),
 ('cox', 0.95343027882361187),
 ('paris', 0.95278479030472663),
 ('heart', 0.95238806924516806),
 ('hooked', 0.95155887071161305),
 ('comfortable', 0.94803943018873538),
 ('mgm', 0.94446160884085151),
 ('masterpiece', 0.94155039863339296),
 ('themes', 0.94118828349588235),
 ('danny', 0.93967118051821874),
 ('anime', 0.93378388932167222),
 ('perry', 0.93328830824272613),
 ('joy', 0.93301752567946861),
 ('lovable', 0.93081883243706487),
 ('mysteries', 0.92953595862417571),
 ('hal', 0.92953595862417571),
 ('louis', 0.92871325187271225),
 ('charming', 0.92520609553210742),
 ('urban', 0.92367083917177761),
 ('allows', 0.92183091224977043),
 ('impact', 0.91815814604895041),
 ('italy', 0.91629073187415511),
 ('gradually', 0.91629073187415511),
 ('lifestyle', 0.91629073187415511),
 ('spy', 0.91289514287301687),
 ('treat', 0.91193342650519937),
 ('subsequent', 0.91056005716517008),
 ('kennedy', 0.90981821736853763),
 ('loving', 0.90967549275543591),
 ('surprising', 0.90937028902958128),
 ('quiet', 0.90648673177753425),
 ('winter', 0.90624039602065365),
 ('reveals', 0.90490540964902977),
 ('raw', 0.90445627422715225),
 ('funniest', 0.90078654533818991),
 ('pleased', 0.89994159387262562),
 ('norman', 0.89994159387262562),
 ('thief', 0.89874642222324552),
 ('season', 0.89827222637147675),
 ('secrets', 0.89794159320595857),
 ('colorful', 0.89705936994626756),
 ('highest', 0.8967461358011849),
 ('compelling', 0.89462923509297576),
 ('danes', 0.89248008318043659),
 ('castle', 0.88967708335606499),
 ('kudos', 0.88889175768604067),
 ('great', 0.88810470901464589),
 ('baseball', 0.88730319500090271),
 ('subtitles', 0.88730319500090271),
 ('bleak', 0.88730319500090271),
 ('winner', 0.88643776872447388),
 ('tragedy', 0.88563699078315261),
 ('todd', 0.88551907320740142),
 ('nicely', 0.87924946019380601),
 ('arthur', 0.87546873735389985),
 ('essential', 0.87373111745535925),
 ('gorgeous', 0.8731725250935497),
 ('fonda', 0.87294029100054127),
 ('eastwood', 0.87139541196626402),
 ('focuses', 0.87082835779739776),
 ('enjoyed', 0.87070195951624607),
 ('natural', 0.86997924506912838),
 ('intensity', 0.86835126958503595),
 ('witty', 0.86824103423244681),
 ('rob', 0.8642954367557748),
 ('worlds', 0.86377269759070874),
 ('health', 0.86113891179907498),
 ('magical', 0.85953791528170564),
 ('deeper', 0.85802182375017932),
 ('lucy', 0.85618680780444956),
 ('moving', 0.85566611005772031),
 ('lovely', 0.85290640004681306),
 ('purple', 0.8513711857748395),
 ('memorable', 0.84801189112086062),
 ('sings', 0.84729786038720367),
 ('craig', 0.84342938360928321),
 ('modesty', 0.84342938360928321),
 ('relate', 0.84326559685926517),
 ('episodes', 0.84223712084137292),
 ('strong', 0.84167135777060931),
 ('smith', 0.83959811108590054),
 ('tear', 0.83704136022001441),
 ('apartment', 0.83333115290549531),
 ('princess', 0.83290912293510388),
 ('disagree', 0.83290912293510388),
 ('kung', 0.83173334384609199),
 ('adventure', 0.83150561393278388),
 ('columbo', 0.82667857318446791),
 ('jake', 0.82667857318446791),
 ('adds', 0.82485652591452319),
 ('hart', 0.82472353834866463),
 ('strength', 0.82417544296634937),
 ('realizes', 0.82360006895738058),
 ('dave', 0.8232003088081431),
 ('childhood', 0.82208086393583857),
 ('forbidden', 0.81989888619908913),
 ('tight', 0.81883539572344199),
 ('surreal', 0.8178506590609026),
 ('manager', 0.81770990320170756),
 ('dancer', 0.81574950265227764),
 ('studios', 0.81093021621632877),
 ('con', 0.81093021621632877),
 ('miike', 0.80821651034473263),
 ('realistic', 0.80807714723392232),
 ('explicit', 0.80792269515237358),
 ('kurt', 0.8060875917405409),
 ('traditional', 0.80535917116687328),
 ('deals', 0.80535917116687328),
 ('holds', 0.80493858654806194),
 ('carl', 0.80437281567016972),
 ('touches', 0.80396154690023547),
 ('gene', 0.80314807577427383),
 ('albert', 0.8027669055771679),
 ('abc', 0.80234647252493729),
 ('cry', 0.80011930011211307),
 ('sides', 0.7995275841185171),
 ('develops', 0.79850769621777162),
 ('eyre', 0.79850769621777162),
 ('dances', 0.79694397424158891),
 ('oscars', 0.79633141679517616),
 ('legendary', 0.79600456599965308),
 ('hearted', 0.79492987486988764),
 ('importance', 0.79492987486988764),
 ('portraying', 0.79356592830699269),
 ('impressed', 0.79258107754813223),
 ('waters', 0.79112758892014912),
 ('empire', 0.79078565012386137),
 ('edge', 0.789774016249017),
 ('jean', 0.78845736036427028),
 ('environment', 0.78845736036427028),
 ('sentimental', 0.7864791203521645),
 ('captured', 0.78623760362595729),
 ('styles', 0.78592891401091158),
 ('daring', 0.78592891401091158),
 ('frank', 0.78275933924963248),
 ('tense', 0.78275933924963248),
 ('backgrounds', 0.78275933924963248),
 ('matches', 0.78275933924963248),
 ('gothic', 0.78209466657644144),
 ('sharp', 0.7814397877056235),
 ('achieved', 0.78015855754957497),
 ('court', 0.77947526404844247),
 ('steals', 0.7789140023173704),
 ('rules', 0.77844476107184035),
 ('colors', 0.77684619943659217),
 ('reunion', 0.77318988823348167),
 ('covers', 0.77139937745969345),
 ('tale', 0.77010822169607374),
 ('rain', 0.7683706017975328),
 ('denzel', 0.76804848873306297),
 ('stays', 0.76787072675588186),
 ('blob', 0.76725515271366718),
 ('maria', 0.76214005204689672),
 ('conventional', 0.76214005204689672),
 ('fresh', 0.76158434211317383),
 ('midnight', 0.76096977689870637),
 ('landscape', 0.75852993982279704),
 ('animated', 0.75768570169751648),
 ('titanic', 0.75666058628227129),
 ('sunday', 0.75666058628227129),
 ('spring', 0.7537718023763802),
 ('cagney', 0.7537718023763802),
 ('enjoyable', 0.75246375771636476),
 ('immensely', 0.75198768058287868),
 ('sir', 0.7507762933965817),
 ('nevertheless', 0.75067102469813185),
 ('driven', 0.74994477895307854),
 ('performances', 0.74883252516063137),
 ('memories', 0.74721440183022114),
 ('nowadays', 0.74721440183022114),
 ('simple', 0.74641420974143258),
 ('golden', 0.74533293373051557),
 ('leslie', 0.74533293373051557),
 ('lovers', 0.74497224842453125),
 ('relationship', 0.74484232345601786),
 ('supporting', 0.74357803418683721),
 ('che', 0.74262723782331497),
 ('packed', 0.7410032017375805),
 ('trek', 0.74021469141793106),
 ('provoking', 0.73840377214806618),
 ('strikes', 0.73759894313077912),
 ('depiction', 0.73682224406260699),
 ('emotional', 0.73678211645681524),
 ('secretary', 0.7366322924996842),
 ('influenced', 0.73511137965897755),
 ('florida', 0.73511137965897755),
 ('germany', 0.73288750920945944),
 ('brings', 0.73142936713096229),
 ('lewis', 0.73129894652432159),
 ('elderly', 0.73088750854279239),
 ('owner', 0.72743625403857748),
 ('streets', 0.72666987259858895),
 ('henry', 0.72642196944481741),
 ('portrays', 0.72593700338293632),
 ('bears', 0.7252354951114458),
 ('china', 0.72489587887452556),
 ('anger', 0.72439972406404984),
 ('society', 0.72433010799663333),
 ('available', 0.72415741730250549),
 ('best', 0.72347034060446314),
 ('bugs', 0.72270598280148979),
 ('magic', 0.71878961117328299),
 ('delivers', 0.71846498854423513),
 ('verhoeven', 0.71846498854423513),
 ('jim', 0.71783979315031676),
 ('donald', 0.71667767797013937),
 ('endearing', 0.71465338578090898),
 ('relationships', 0.71393795022901896),
 ('greatly', 0.71256526641704687),
 ('charlie', 0.71024161391924534),
 ('brad', 0.71024161391924534),
 ('simon', 0.70967648251115578),
 ('effectively', 0.70914752190638641),
 ('march', 0.70774597998109789),
 ('atmosphere', 0.70744773070214162),
 ('influence', 0.70733181555190172),
 ('genius', 0.706392407309966),
 ('emotionally', 0.70556970055850243),
 ('ken', 0.70526854109229009),
 ('identity', 0.70484322032313651),
 ('sophisticated', 0.70470800296102132),
 ('dan', 0.70457587638356811),
 ('andrew', 0.70329955202396321),
 ('india', 0.70144598337464037),
 ('roy', 0.69970458110610434),
 ('surprisingly', 0.6995780708902356),
 ('sky', 0.69780919366575667),
 ('romantic', 0.69664981111114743),
 ('match', 0.69566924999265523),
 ('meets', 0.69314718055994529),
 ('cowboy', 0.69314718055994529),
 ('wave', 0.69314718055994529),
 ('bitter', 0.69314718055994529),
 ('patient', 0.69314718055994529),
 ('stylish', 0.69314718055994529),
 ('britain', 0.69314718055994529),
 ('affected', 0.69314718055994529),
 ('beatty', 0.69314718055994529),
 ('love', 0.69198533541937324),
 ('paul', 0.68980827929443067),
 ('andy', 0.68846333124751902),
 ('performance', 0.68797386327972465),
 ('patrick', 0.68645819240914863),
 ('unlike', 0.68546468438792907),
 ('brooks', 0.68433655087779044),
 ('refuses', 0.68348526964820844),
 ('award', 0.6824518914431974),
 ('complaint', 0.6824518914431974),
 ('ride', 0.68229716453587952),
 ('dawson', 0.68171848473632257),
 ('luke', 0.68158635815886937),
 ('wells', 0.68087708796813096),
 ('france', 0.6804081547825156),
 ('sports', 0.68007509899259255),
 ('handsome', 0.68007509899259255),
 ('directs', 0.67875844310784572),
 ('rebel', 0.67875844310784572),
 ('greater', 0.67605274720064523),
 ('dreams', 0.67599410133369586),
 ('effective', 0.67565402311242806),
 ('interpretation', 0.67479804189174875),
 ('works', 0.67445504754779284),
 ('brando', 0.67445504754779284),
 ('noble', 0.6737290947028437),
 ('paced', 0.67314651385327573),
 ('le', 0.67067432470788668),
 ('master', 0.67015766233524654),
 ('h', 0.6696166831497512),
 ('rings', 0.66904962898088483),
 ('easy', 0.66895995494594152),
 ('city', 0.66820823221269321),
 ('sunshine', 0.66782937257565544),
 ('succeeds', 0.66647893347778397),
 ('relations', 0.664159643686693),
 ('england', 0.66387679825983203),
 ('glimpse', 0.66329421741026418),
 ('aired', 0.66268797307523675),
 ('sees', 0.66263163663399482),
 ('both', 0.66248336767382998),
 ('definitely', 0.66199789483898808),
 ('imaginative', 0.66139848224536502),
 ('appreciate', 0.66083893732728749),
 ('tricks', 0.66071190480679143),
 ('striking', 0.66071190480679143),
 ('carefully', 0.65999497324304479),
 ('complicated', 0.65981076029235353),
 ('perspective', 0.65962448852130173),
 ('trilogy', 0.65877953705573755),
 ('future', 0.65834665141052828),
 ('lion', 0.65742909795786608),
 ('douglas', 0.65540685257709819),
 ('victor', 0.65540685257709819),
 ('inspired', 0.65459851044271034),
 ('marriage', 0.65392646740666405),
 ('demands', 0.65392646740666405),
 ('father', 0.65172321672194655),
 ('page', 0.65123628494430852),
 ('instant', 0.65058756614114943),
 ('era', 0.6495567444850836),
 ('ruthless', 0.64934455790155243),
 ('saga', 0.64934455790155243),
 ('joan', 0.64891392558311978),
 ('joseph', 0.64841128671855386),
 ('workers', 0.64829661439459352),
 ('fantasy', 0.64726757480925168),
 ('distant', 0.64551913157069074),
 ('accomplished', 0.64551913157069074),
 ('manhattan', 0.64435701639051324),
 ('personal', 0.64355023942057321),
 ('meeting', 0.64313675998528386),
 ('individual', 0.64313675998528386),
 ('pushing', 0.64313675998528386),
 ('pleasant', 0.64250344774119039),
 ('brave', 0.64185388617239469),
 ('william', 0.64083139119578469),
 ('hudson', 0.64077919504262937),
 ('friendly', 0.63949446706762514),
 ('eccentric', 0.63907995928966954),
 ('awards', 0.63875310849414646),
 ('jack', 0.63838309514997038),
 ('seeking', 0.63808740337691783),
 ('divorce', 0.63757732940513456),
 ('colonel', 0.63757732940513456),
 ('jane', 0.63443957973316734),
 ('keeping', 0.63414883979798953),
 ('gives', 0.63383568159497883),
 ('ted', 0.63342794585832296),
 ('animation', 0.63208692379869902),
 ('progress', 0.6317782341836532),
 ('larger', 0.63127177684185776),
 ('concert', 0.63127177684185776),
 ('nation', 0.6296337748376194),
 ('albeit', 0.62739580299716491),
 ('adapted', 0.62613647027698516),
 ('discovers', 0.62542900650499444),
 ('classic', 0.62504956428050518),
 ('segment', 0.62335141862440335),
 ('morgan', 0.62303761437291871),
 ('mouse', 0.62294292188669675),
 ('impressive', 0.62211140744319349),
 ('artist', 0.62168821657780038),
 ('ultimate', 0.62168821657780038),
 ('griffith', 0.62117368093485603),
 ('drew', 0.62082651898031915),
 ('emily', 0.62082651898031915),
 ('moved', 0.6197197120051281),
 ('families', 0.61903920840622351),
 ('profound', 0.61903920840622351),
 ('innocent', 0.61851219917136446),
 ('versions', 0.61730910416844087),
 ('eddie', 0.61691981517206107),
 ('criticism', 0.61651395453902935),
 ('nature', 0.61594514653194088),
 ('recognized', 0.61518563909023349),
 ('sexuality', 0.61467556511845012),
 ('contract', 0.61400986000122149),
 ('brian', 0.61344043794920278),
 ('remembered', 0.6131044728864089),
 ('determined', 0.6123858239154869),
 ('offers', 0.61207935747116349),
 ('pleasure', 0.61195702582993206),
 ('washington', 0.61180154110599294),
 ('images', 0.61159731359583758),
 ('games', 0.61067095873570676),
 ('academy', 0.60872983874736208),
 ('fashioned', 0.60798937221963845),
 ('melodrama', 0.60749173598145145),
 ('rough', 0.60613580357031549),
 ('charismatic', 0.60613580357031549),
 ('peoples', 0.60613580357031549),
 ('dealing', 0.60517840761398811),
 ('fine', 0.60496962268013299),
 ('tap', 0.60391604683200273),
 ('trio', 0.60157998703445481),
 ('russell', 0.60120968523425966),
 ('figures', 0.60077386042893011),
 ('ward', 0.60005675749393339),
 ('shine', 0.59911823091166894),
 ('brady', 0.59911823091166894),
 ('job', 0.59845562125168661),
 ('satisfied', 0.59652034487087369),
 ('river', 0.59637962862495086),
 ('brown', 0.595773016534769),
 ('believable', 0.59566072133302495),
 ('always', 0.59470710774669278),
 ('bound', 0.59470710774669278),
 ('hall', 0.5933967777928858),
 ('cook', 0.5916777203950857),
 ('claire', 0.59136448625000293),
 ('broadway', 0.59033768669372433),
 ('anna', 0.58778666490211906),
 ('peace', 0.58628403501758408),
 ('visually', 0.58539431926349916),
 ('morality', 0.58525821854876026),
 ('falk', 0.58525821854876026),
 ('growing', 0.58466653756587539),
 ('experiences', 0.58314628534561685),
 ('stood', 0.58314628534561685),
 ('touch', 0.58122926435596001),
 ('lives', 0.5810976767513224),
 ('kubrick', 0.58066919713325493),
 ('timing', 0.58047401805583243),
 ('expressions', 0.57981849525294216),
 ('struggles', 0.57981849525294216),
 ('authentic', 0.57848427223980559),
 ('helen', 0.57763429343810091),
 ('pre', 0.57700753064729182),
 ('quirky', 0.5753641449035618),
 ('young', 0.57531672344534313),
 ('inner', 0.57454143815209846),
 ('mexico', 0.57443087372056334),
 ('clint', 0.57380042292737909),
 ('sisters', 0.57286101468544337),
 ('realism', 0.57226528899949558),
 ('french', 0.5720692490067093),
 ('personalities', 0.5720692490067093),
 ('surprises', 0.57113222999698177),
 ('adventures', 0.57113222999698177),
 ('overcome', 0.5697681593994407),
 ('timothy', 0.56953322459276867),
 ('tales', 0.56909453188996639),
 ('war', 0.56843317302781682),
 ('civil', 0.5679840376059393),
 ('countries', 0.56737779327091187),
 ('streep', 0.56710645966458029),
 ('tradition', 0.56685345523565323),
 ('oliver', 0.56673325570428668),
 ('australia', 0.56580775818334383),
 ('understanding', 0.56531380905006046),
 ('players', 0.56509525370004821),
 ('knowing', 0.56489284503626647),
 ('rogers', 0.56421349718405212),
 ('suspenseful', 0.56368911332305849),
 ('variety', 0.56368911332305849),
 ('true', 0.56281525180810066),
 ('jr', 0.56220982311246936),
 ('psychological', 0.56108745854687891),
 ('sent', 0.55961578793542266),
 ('grand', 0.55961578793542266),
 ('branagh', 0.55961578793542266),
 ('reminiscent', 0.55961578793542266),
 ('performing', 0.55961578793542266),
 ('wealth', 0.55961578793542266),
 ('overwhelming', 0.55961578793542266),
 ('odds', 0.55961578793542266),
 ('brothers', 0.55891181043362848),
 ('howard', 0.55811089675600245),
 ('david', 0.55693122256475369),
 ('generation', 0.55628799784274796),
 ('grow', 0.55612538299565417),
 ('survival', 0.55594605904646033),
 ('mainstream', 0.55574731115750231),
 ('dick', 0.55431073570572953),
 ('charm', 0.55288175575407861),
 ('kirk', 0.55278982286502287),
 ('twists', 0.55244729845681018),
 ('gangster', 0.55206858230003986),
 ('jeff', 0.55179306225421365),
 ('family', 0.55116244510065526),
 ('tend', 0.55053307336110335),
 ('thanks', 0.55049088015842218),
 ('world', 0.54744234723432639),
 ('sutherland', 0.54743536937855164),
 ('life', 0.54695514434959924),
 ('disc', 0.54654370636806993),
 ('bug', 0.54654370636806993),
 ('tribute', 0.5455111817538808),
 ('europe', 0.54522705048332309),
 ('sacrifice', 0.54430155296238014),
 ('color', 0.54405127139431109),
 ('superior', 0.54333490233128523),
 ('york', 0.54318235866536513),
 ('pulls', 0.54266622962164945),
 ('jackson', 0.54232429082536171),
 ('hearts', 0.54232429082536171),
 ('enjoy', 0.54124285135906114),
 ('redemption', 0.54056759296472823),
 ('madness', 0.540384426007535),
 ('stands', 0.5389965007326869),
 ('trial', 0.5389965007326869),
 ('greek', 0.5389965007326869),
 ('hamilton', 0.5389965007326869),
 ('each', 0.5388212312554177),
 ('faithful', 0.53773307668591508),
 ('received', 0.5372768098531604),
 ('documentaries', 0.53714293208336406),
 ('jealous', 0.53714293208336406),
 ('different', 0.53709860682460819),
 ('describes', 0.53680111016925136),
 ('shorts', 0.53596159703753288),
 ('brilliance', 0.53551823635636209),
 ('mountains', 0.53492317534505118),
 ('share', 0.53408248593025787),
 ('dealt', 0.53408248593025787),
 ('providing', 0.53329847961804933),
 ('explore', 0.53329847961804933),
 ('series', 0.5325809226575603),
 ('fellow', 0.5323318289869543),
 ('loves', 0.53062825106217038),
 ('revolution', 0.53062825106217038),
 ('olivier', 0.53062825106217038),
 ('roman', 0.53062825106217038),
 ('century', 0.53002783074992665),
 ('musical', 0.52966871156747064),
 ('heroic', 0.52925932545482868),
 ('approach', 0.52806743020049673),
 ('ironically', 0.52806743020049673),
 ('temple', 0.52806743020049673),
 ('moves', 0.5279372642387119),
 ('gift', 0.52702030968597136),
 ('julie', 0.52609309589677911),
 ('tells', 0.52415107836314001),
 ('radio', 0.52394671172868779),
 ('uncle', 0.52354439617376536),
 ('union', 0.52324814376454787),
 ('deep', 0.52309571635780505),
 ('reminds', 0.52157841554225237),
 ('famous', 0.52118841080153722),
 ('jazz', 0.52053443789295151),
 ('dennis', 0.51987545928590861),
 ('epic', 0.51919387343650736),
 ('adult', 0.519167695083386),
 ('shows', 0.51915322220375304),
 ('performed', 0.5191244265806858),
 ('demons', 0.5191244265806858),
 ('discovered', 0.51879379341516751),
 ('eric', 0.51879379341516751),
 ('youth', 0.5185626062681431),
 ('human', 0.51851411224987087),
 ('tarzan', 0.51813827061227724),
 ('ourselves', 0.51794309153485463),
 ('wwii', 0.51758240622887042),
 ('passion', 0.5162164724008671),
 ('desire', 0.51607497965213445),
 ('pays', 0.51581316527702981),
 ('dirty', 0.51557622652458857),
 ('fox', 0.51557622652458857),
 ('sympathetic', 0.51546600332249293),
 ('symbolism', 0.51546600332249293),
 ('attitude', 0.51530993621331933),
 ('appearances', 0.51466440007315639),
 ('jeremy', 0.51466440007315639),
 ('fun', 0.51439068993048687),
 ('south', 0.51420972175023116),
 ('arrives', 0.51409894911095988),
 ('present', 0.51341965894303732),
 ('com', 0.51326167856387173),
 ('smile', 0.51265880484765169),
 ('alan', 0.51082562376599072),
 ('ring', 0.51082562376599072),
 ('visit', 0.51082562376599072),
 ('fits', 0.51082562376599072),
 ('provided', 0.51082562376599072),
 ('carter', 0.51082562376599072),
 ('aging', 0.51082562376599072),
 ('countryside', 0.51082562376599072),
 ('begins', 0.51015650363396647),
 ('success', 0.50900578704900468),
 ('japan', 0.50900578704900468),
 ('accurate', 0.50895471583017893),
 ('proud', 0.50800474742434931),
 ('daily', 0.5075946031845443),
 ('karloff', 0.50724780241810674),
 ('atmospheric', 0.50724780241810674),
 ('recently', 0.50714914903668207),
 ('fu', 0.50704490092608467),
 ('horrors', 0.50656122497953315),
 ('finding', 0.50637127341661037),
 ('lust', 0.5059356384717989),
 ('hitchcock', 0.50574947073413001),
 ('among', 0.50334004951332734),
 ('viewing', 0.50302139827440906),
 ('investigation', 0.50262885656181222),
 ('shining', 0.50262885656181222),
 ('duo', 0.5020919437972361),
 ('cameron', 0.5020919437972361),
 ('finds', 0.50128303100539795),
 ('contemporary', 0.50077528791248915),
 ('genuine', 0.50046283673044401),
 ('frightening', 0.49995595152908684),
 ('plays', 0.49975983848890226),
 ('age', 0.49941323171424595),
 ('position', 0.49899116611898781),
 ('continues', 0.49863035067217237),
 ('roles', 0.49839716550752178),
 ('james', 0.49837216269470402),
 ('individuals', 0.49824684155913052),
 ('brought', 0.49783842823917956),
 ('hilarious', 0.49714551986191058),
 ('brutal', 0.49681488669639234),
 ('appropriate', 0.49643688631389105),
 ('dance', 0.49581998314812048),
 ('league', 0.49578774640145024),
 ('helping', 0.49578774640145024),
 ('answers', 0.49578774640145024),
 ('stunts', 0.49561620510246196),
 ('traveling', 0.49532143723002542),
 ('thoroughly', 0.49414593456733524),
 ('depicted', 0.49317068852726992),
 ('combination', 0.49247648509779424),
 ('honor', 0.49247648509779424),
 ('differences', 0.49247648509779424),
 ('fully', 0.49213349075383811),
 ('tracy', 0.49159426183810306),
 ('battles', 0.49140753790888908),
 ('possibility', 0.49112055268665822),
 ('romance', 0.4901589869574316),
 ('initially', 0.49002249613622745),
 ('happy', 0.4898997500608791),
 ('crime', 0.48977221456815834),
 ('singing', 0.4893852925281213),
 ('especially', 0.48901267837860624),
 ('shakespeare', 0.48754793889664511),
 ('hugh', 0.48729512635579658),
 ('detail', 0.48609484250827351),
 ('julia', 0.48550781578170082),
 ('san', 0.48550781578170082),
 ('guide', 0.48550781578170082),
 ('desperation', 0.48550781578170082),
 ('companion', 0.48550781578170082),
 ('strongly', 0.48460242866688824),
 ('necessary', 0.48302334245403883),
 ('humanity', 0.48265474679929443),
 ('drama', 0.48221998493060503),
 ('nonetheless', 0.48183808689273838),
 ('intrigue', 0.48183808689273838),
 ('warming', 0.48183808689273838),
 ('cuba', 0.48183808689273838),
 ('planned', 0.47957308026188628),
 ('pictures', 0.47929937011921681),
 ('broadcast', 0.47849024312305422),
 ('nine', 0.47803580094299974),
 ('settings', 0.47743860773325364),
 ('history', 0.47732966933780852),
 ('ordinary', 0.47725880012690741),
 ('trade', 0.47692407209030935),
 ('official', 0.47608267532211779),
 ('primary', 0.47608267532211779),
 ('episode', 0.47529620261150429),
 ('role', 0.47520268270188676),
 ('spirit', 0.47477690799839323),
 ('grey', 0.47409361449726067),
 ('ways', 0.47323464982718205),
 ('cup', 0.47260441094579297),
 ('piano', 0.47260441094579297),
 ('familiar', 0.47241617565111949),
 ('sinister', 0.47198579044972683),
 ('reveal', 0.47171449364936496),
 ('max', 0.47150852042515579),
 ('dated', 0.47121648567094482),
 ('losing', 0.47000362924573563),
 ('discovery', 0.47000362924573563),
 ('vicious', 0.47000362924573563),
 ('genuinely', 0.46871413841586385),
 ('hatred', 0.46734051182625186),
 ('mistaken', 0.46702300110759781),
 ('dream', 0.46608972992459924),
 ('challenge', 0.46608972992459924),
 ('crisis', 0.46575733836428446),
 ('photographed', 0.46488852857896512),
 ('critics', 0.46430560813109778),
 ('bird', 0.46430560813109778),
 ('machines', 0.46430560813109778),
 ('born', 0.46411383518967209),
 ('detective', 0.4636633473511525),
 ('higher', 0.46328467899699055),
 ('remains', 0.46262352194811296),
 ('inevitable', 0.46262352194811296),
 ('soviet', 0.4618180446592961),
 ('ryan', 0.46134556650262099),
 ('african', 0.46112595521371813),
 ('smaller', 0.46081520319132935),
 ('techniques', 0.46052488529119184),
 ('information', 0.46034171833399862),
 ('deserved', 0.45999798712841444),
 ('lynch', 0.45953232937844013),
 ('spielberg', 0.45953232937844013),
 ('cynical', 0.45953232937844013),
 ('tour', 0.45953232937844013),
 ('francisco', 0.45953232937844013),
 ('struggle', 0.45911782160048453),
 ('language', 0.45902121257712653),
 ('visual', 0.45823514408822852),
 ('warner', 0.45724137763188427),
 ('social', 0.45720078250735313),
 ('reality', 0.45719346885019546),
 ('hidden', 0.45675840249571492),
 ('breaking', 0.45601738727099561),
 ('sometimes', 0.45563021171182794),
 ('modern', 0.45500247579345005),
 ('surfing', 0.45425527227759638),
 ('popular', 0.45410691533051023),
 ('surprised', 0.4534409399850382),
 ('follows', 0.45245361754408348),
 ('keeps', 0.45234869400701483),
 ('john', 0.4520909494482197),
 ('mixed', 0.45198512374305722),
 ('defeat', 0.45198512374305722),
 ('justice', 0.45142724367280018),
 ('treasure', 0.45083371313801535),
 ('presents', 0.44973793178615257),
 ('years', 0.44919197032104968),
 ('chief', 0.44895022004790319),
 ('shadows', 0.44802472252696035),
 ('closely', 0.44701411102103689),
 ('segments', 0.44701411102103689),
 ('lose', 0.44658335503763702),
 ('caine', 0.44628710262841953),
 ('caught', 0.44610275383999071),
 ('hamlet', 0.44558510189758965),
 ('chinese', 0.44507424620321018),
 ('welcome', 0.44438052435783792),
 ('birth', 0.44368632092836219),
 ('represents', 0.44320543609101143),
 ('puts', 0.44279106572085081),
 ('visuals', 0.44183275227903923),
 ('fame', 0.44183275227903923),
 ('closer', 0.44183275227903923),
 ('web', 0.44183275227903923),
 ('criminal', 0.4412745608048752),
 ('minor', 0.4409224199448939),
 ('jon', 0.44086703515908027),
 ('liked', 0.44074991514020723),
 ('restaurant', 0.44031183943833246),
 ('de', 0.43983275161237217),
 ('flaws', 0.43983275161237217),
 ('searching', 0.4393666597838457),
 ('rap', 0.43891304217570443),
 ('light', 0.43884433018199892),
 ('elizabeth', 0.43872232986464677),
 ('marry', 0.43861731542506488),
 ('learned', 0.43825493093115531),
 ('controversial', 0.43825493093115531),
 ('oz', 0.43825493093115531),
 ('slowly', 0.43785660389939979),
 ('comedic', 0.43721380642274466),
 ('wayne', 0.43721380642274466),
 ('thrilling', 0.43721380642274466),
 ('bridge', 0.43721380642274466),
 ('married', 0.43658501682196887),
 ('nazi', 0.4361020775700542),
 ('murder', 0.4353180712578455),
 ('physical', 0.4353180712578455),
 ('johnny', 0.43483971678806865),
 ('michelle', 0.43445264498141672),
 ('wallace', 0.43403848055222038),
 ('comedies', 0.43395706390247063),
 ('silent', 0.43395706390247063),
 ('played', 0.43387244114515305),
 ('international', 0.43363598507486073),
 ('vision', 0.43286408229627887),
 ('intelligent', 0.43196704885367099),
 ('shop', 0.43078291609245434),
 ('also', 0.43036720209769169),
 ('levels', 0.4302451371066513),
 ('miss', 0.43006426712153217),
 ('movement', 0.4295626596872249),
 ...]

In [12]:
# words most frequently seen in a review with a "NEGATIVE" label
list(reversed(pos_neg_ratios.most_common()))[0:30]


Out[12]:
[('boll', -4.0778152602708904),
 ('uwe', -3.9218753018711578),
 ('seagal', -3.3202501058581921),
 ('unwatchable', -3.0269848170580955),
 ('stinker', -2.9876839403711624),
 ('mst', -2.7753833211707968),
 ('incoherent', -2.7641396677532537),
 ('unfunny', -2.5545257844967644),
 ('waste', -2.4907515123361046),
 ('blah', -2.4475792789485005),
 ('horrid', -2.3715779644809971),
 ('pointless', -2.3451073877136341),
 ('atrocious', -2.3187369339642556),
 ('redeeming', -2.2667790015910296),
 ('prom', -2.2601040980178784),
 ('drivel', -2.2476029585766928),
 ('lousy', -2.2118080125207054),
 ('worst', -2.1930856334332267),
 ('laughable', -2.172468615469592),
 ('awful', -2.1385076866397488),
 ('poorly', -2.1326133844207011),
 ('wasting', -2.1178155545614512),
 ('remotely', -2.111046881095167),
 ('existent', -2.0024805005437076),
 ('boredom', -1.9241486572738005),
 ('miserably', -1.9216610938019989),
 ('sucks', -1.9166645809588516),
 ('uninspired', -1.9131499212248517),
 ('lame', -1.9117232884159072),
 ('insult', -1.9085323769376259)]

Transforming Text into Numbers


In [13]:
from IPython.display import Image

review = "This was a horrible, terrible movie."

Image(filename='sentiment_network.png')


Out[13]:

In [14]:
review = "The movie was excellent"

Image(filename='sentiment_network_pos.png')


Out[14]:

Project 2: Creating the Input/Output Data


In [15]:
vocab = set(total_counts.keys())
vocab_size = len(vocab)
print(vocab_size)


74074

In [16]:
list(vocab)


Out[16]:
['',
 'zealander',
 'subjugation',
 'sussanah',
 'mantra',
 'roz',
 'arthouse',
 'coffeshop',
 'impressing',
 'vicente',
 'accentuated',
 'mooning',
 'saat',
 'schuer',
 'flemmish',
 'yoon',
 'ringers',
 'looonnnggg',
 'hagel',
 'husband',
 'flicka',
 'mostof',
 'haenel',
 'wickerman',
 'swaps',
 'tyrannosaurus',
 'doosre',
 'defrosts',
 'coax',
 'unwatchably',
 'garret',
 'isild',
 'reveal',
 'amc',
 'resided',
 'adaptaion',
 'streamwood',
 'madsen',
 'hg',
 'longueurs',
 'hoydenish',
 'keeranor',
 'looters',
 'supertank',
 'sommersault',
 'buttress',
 'baldwin',
 'world',
 'thare',
 'vulcans',
 'wordplay',
 'pembrook',
 'garrel',
 'windblown',
 'baton',
 'barbells',
 'huddles',
 'sssssssssssooooooooooooo',
 'brentwood',
 'spielbergian',
 'yalu',
 'freke',
 'woodrell',
 'alejandra',
 'msr',
 'expertise',
 'quickest',
 'brigadier',
 'mari',
 'undertaste',
 'rvds',
 'scarynot',
 'sumire',
 'saddam',
 'obnoxious',
 'pilfered',
 'catologed',
 'thomilson',
 'pernicious',
 'landscaped',
 'unpredictably',
 'moe',
 'clog',
 'ralston',
 'jude',
 'pay',
 'saving',
 'sowing',
 'stompers',
 'pojar',
 'letdown',
 'whooshing',
 'dissapointing',
 'venereal',
 'althogh',
 'dimension',
 'capitulates',
 'harpy',
 'plotsidney',
 'irreversibly',
 'extremist',
 'yakkity',
 'nikolett',
 'nicolosi',
 'koyuki',
 'julia',
 'shadix',
 'matsuda',
 'farting',
 'azjazz',
 'taxed',
 'assuredness',
 'donkeys',
 'tryout',
 'comdie',
 'heretic',
 'underestimate',
 'farily',
 'belched',
 'intercepts',
 'elan',
 'sleepless',
 'uproar',
 'valeria',
 'spook',
 'cos',
 'freud',
 'coffeehouse',
 'bletchly',
 'decently',
 'spreader',
 'arejohn',
 'somebody',
 'soma',
 'guineas',
 'mondrians',
 'iene',
 'cosima',
 'sling',
 'matinees',
 'addy',
 'chided',
 'cumentery',
 'recogniton',
 'investigations',
 'lionized',
 'ported',
 'serpent',
 'thieson',
 'milwall',
 'fetishwear',
 'broached',
 'covenant',
 'project',
 'church',
 'leashes',
 'pregnancy',
 'fanning',
 'aclear',
 'fairuza',
 'advertized',
 'proverbs',
 'duval',
 'historicity',
 'gauging',
 'phillipe',
 'unassured',
 'mechanisms',
 'typographic',
 'mbb',
 'denethor',
 'standards',
 'specializes',
 'tolerance',
 'harvery',
 'cambodia',
 'carla',
 'wa',
 'gattaca',
 'castanet',
 'unrealism',
 'riz',
 'check',
 'cowboys',
 'unengineered',
 'poulange',
 'btardly',
 'chalantly',
 'rekka',
 'coordinator',
 'jewison',
 'sticklers',
 'clampets',
 'stockpiled',
 'croc',
 'shita',
 'sapping',
 'tvnz',
 'spoilersspoilersspoilersspoilers',
 'leonie',
 'grandmother',
 'ayn',
 'muldoon',
 'glaucoma',
 'reommended',
 'daly',
 'preamble',
 'chevy',
 'moodily',
 'peachy',
 'relocating',
 'ballets',
 'careering',
 'crazily',
 'satred',
 'rehearse',
 'luxuriant',
 'irritating',
 'conjurers',
 'adama',
 'teapot',
 'mayagi',
 'revolutionised',
 'scob',
 'satana',
 'mezrich',
 'shopping',
 'generalised',
 'gomes',
 'appetites',
 'bgr',
 'tripp',
 'rakhi',
 'dredd',
 'wilfred',
 'unrest',
 'nosey',
 'torrence',
 'delouise',
 'twangy',
 'loving',
 'insightful',
 'third',
 'amadeus',
 'codenamedragonfly',
 'flashlight',
 'triviata',
 'jcpenney',
 'jamacian',
 'moseley',
 'serlingesq',
 'attacker',
 'neidhart',
 'oilmen',
 'michum',
 'ecclesten',
 'fluffy',
 'balzac',
 'simonson',
 'ganja',
 'crampton',
 'institutions',
 'yaoi',
 'resulted',
 'densest',
 'standby',
 'ravera',
 'synthesiser',
 'justness',
 'lessened',
 'successes',
 'incontinuities',
 'groundskeeper',
 'lesley',
 'kakka',
 'diomede',
 'futher',
 'shiraki',
 'untraditional',
 'loosening',
 'undifferentiated',
 'referenced',
 'koko',
 'hellbent',
 'diaphanous',
 'fainting',
 'voudon',
 'searching',
 'investigation',
 'delon',
 'hankies',
 'stains',
 'dierdre',
 'skillfully',
 'radcliffe',
 'phipps',
 'roberte',
 'unceremoniously',
 'isao',
 'partioned',
 'honoria',
 'backstabbed',
 'brasil',
 'schmoke',
 'americanime',
 'diminutive',
 'retried',
 'succeed',
 'shoot',
 'constructor',
 'undoubtedly',
 'decapitations',
 'heartbreaker',
 'ggooooodd',
 'court',
 'sheng',
 'tacoma',
 'retinas',
 'carolyn',
 'likability',
 'gremlin',
 'tatsuya',
 'indulgent',
 'decrees',
 'phoebus',
 'wells',
 'nickolson',
 'vacuum',
 'dir',
 'firsthand',
 'establish',
 'surprising',
 'denouement',
 'casavettes',
 'torrences',
 'mee',
 'gimmeclassics',
 'meditative',
 'heatbeats',
 'danira',
 'plaguing',
 'sprinkles',
 'steretyped',
 'strap',
 'twomarlowe',
 'hellborn',
 'volnay',
 'precarious',
 'jefferies',
 'hampering',
 'naggy',
 'adjuster',
 'affaire',
 'resold',
 'exorcismo',
 'ladder',
 'handbags',
 'huntz',
 'squeakiest',
 'paley',
 'quakerly',
 'druggies',
 'dharma',
 'prosaically',
 'sudbury',
 'smurfs',
 'keyed',
 'vindhyan',
 'lioness',
 'jalouse',
 'defilement',
 'unbefitting',
 'horor',
 'knowingis',
 'spender',
 'jaid',
 'moonbeam',
 'tout',
 'laural',
 'flaunts',
 'scrounge',
 'connolly',
 'cusack',
 'depend',
 'waffles',
 'grieco',
 'voiceover',
 'pone',
 'phased',
 'ruman',
 'biggen',
 'channel',
 'feely',
 'gotell',
 'patrics',
 'acclaim',
 'moronie',
 'woar',
 'johnnys',
 'puzzlement',
 'lololol',
 'commonsense',
 'irmo',
 'artless',
 'begrudges',
 'versace',
 'actualy',
 'verdicts',
 'bitchy',
 'smooching',
 'gazarra',
 'unthoughtful',
 'mindless',
 'anand',
 'salina',
 'belter',
 'suicune',
 'enthused',
 'aviation',
 'largo',
 'rf',
 'zilch',
 'slabs',
 'murkwood',
 'chong',
 'guildenstern',
 'landlords',
 'recon',
 'boatthus',
 'sayre',
 'carley',
 'feature',
 'ouverte',
 'tournier',
 'imprint',
 'shaped',
 'genndy',
 'garages',
 'appropriately',
 'shiztz',
 'splatterfest',
 'bushwhacker',
 'canteens',
 'castmember',
 'candice',
 'pluck',
 'barantini',
 'skeleton',
 'counts',
 'ich',
 'iglesia',
 'ilkka',
 'mafioso',
 'gentlemanly',
 'binev',
 'phonebooth',
 'ardala',
 'dirties',
 'unengaged',
 'bierce',
 'hobos',
 'santeria',
 'satires',
 'unite',
 'oppressed',
 'hypothermia',
 'pecker',
 'statuette',
 'mouthpiece',
 'easterners',
 'hottest',
 'hounded',
 'nationals',
 'virgin',
 'monolog',
 'yound',
 'logon',
 'carpentry',
 'characterized',
 'offing',
 'venal',
 'irresistibly',
 'tenuous',
 'disrespecting',
 'obscenely',
 'ploughs',
 'hot',
 'celebertis',
 'nighter',
 'afterwards',
 'anatomical',
 'ichikawa',
 'handily',
 'highways',
 'watching',
 'existant',
 'paraphrasing',
 'mopes',
 'ks',
 'misquote',
 'jerkiness',
 'dallenbach',
 'betwixt',
 'nagasaki',
 'unpretensive',
 'wolfen',
 'prinze',
 'biter',
 'dresler',
 'wristbands',
 'crater',
 'uff',
 'korte',
 'possessingand',
 'resmblance',
 'unselfishly',
 'fifi',
 'aristide',
 'pearson',
 'gulager',
 'inexplicably',
 'vincenzio',
 'dernier',
 'bodypress',
 'janel',
 'hoffmann',
 'consolation',
 'tremont',
 'personnel',
 'artimisia',
 'juliet',
 'inelegant',
 'investigators',
 'birney',
 'yolonda',
 'liberates',
 'virtual',
 'cements',
 'kabala',
 'callaghan',
 'disagreed',
 'sadler',
 'reba',
 'grasper',
 'sheridan',
 'fanatasy',
 'hemispheres',
 'mehras',
 'drollness',
 'reteaming',
 'georgeann',
 'insurgents',
 'ardent',
 'ronnies',
 'applicant',
 'watanbe',
 'smuggled',
 'ashmit',
 'dorfmann',
 'hairspray',
 'barwood',
 'inconsiderate',
 'tottering',
 'theatrically',
 'sgc',
 'facilitate',
 'nhl',
 'cried',
 'pythons',
 'somers',
 'mandylor',
 'pollination',
 'idiom',
 'skivvy',
 'cochran',
 'caddy',
 'tutors',
 'masseratti',
 'inlay',
 'klara',
 'spliced',
 'treachery',
 'smithereens',
 'clin',
 'underwent',
 'branaughs',
 'budgetness',
 'putty',
 'bruckner',
 'pas',
 'implodes',
 'couer',
 'harlin',
 'cobblestones',
 'cataclysmic',
 'belpre',
 'speaking',
 'guaranteeing',
 'roeh',
 'macquire',
 'bestseller',
 'pdf',
 'discord',
 'natali',
 'taxidermist',
 'skelter',
 'counterpointing',
 'topper',
 'synchronicity',
 'coitus',
 'schrab',
 'scandinavian',
 'calvinist',
 'abductors',
 'predecessors',
 'stroked',
 'realy',
 'blesses',
 'embodiments',
 'barbera',
 'murrow',
 'assuring',
 'leaches',
 'kempo',
 'loyd',
 'squirrelly',
 'businesswoman',
 'fraud',
 'moive',
 'cineplex',
 'mazzucato',
 'consacrates',
 'sigel',
 'mills',
 'remarries',
 'razzoff',
 'taekwon',
 'fiji',
 'persecuted',
 'colli',
 'scoped',
 'mnard',
 'willock',
 'allotted',
 'drudgery',
 'reardon',
 'cellphone',
 'photocopied',
 'barbs',
 'malfeasance',
 'shreveport',
 'weasing',
 'dangerously',
 'lemmings',
 'pendant',
 'dewan',
 'material',
 'spinoffs',
 'anim',
 'jehovahs',
 'dutta',
 'unexpressed',
 'olsson',
 'petrochemical',
 'suess',
 'aligning',
 'overdose',
 'rehearsal',
 'extinguisher',
 'carre',
 'misconduct',
 'usis',
 'balcan',
 'pigozzi',
 'aghhh',
 'intention',
 'rubbing',
 'unbound',
 'rgv',
 'glenn',
 'stockton',
 'majidi',
 'ingenuous',
 'fritz',
 'dint',
 'pointing',
 'perce',
 'accommodating',
 'womanhood',
 'willians',
 'harmoniously',
 'blessings',
 'mcbeak',
 'nonentity',
 'laemlee',
 'summoning',
 'payne',
 'prescence',
 'gangrene',
 'guarontee',
 'alun',
 'fling',
 'tungtvannet',
 'fellows',
 'screenshots',
 'enthralling',
 'eraserhead',
 'messel',
 'incubates',
 'queues',
 'xvii',
 'join',
 'sync',
 'volo',
 'tromas',
 'kuroda',
 'gauleiter',
 'subsequences',
 'richard',
 'gullet',
 'okiyas',
 'immemorial',
 'slappings',
 'abigil',
 'hesitation',
 'locality',
 'levon',
 'simn',
 'pantyhose',
 'armin',
 'adventurously',
 'camerawith',
 'crappiest',
 'inaugurate',
 'torero',
 'prisoner',
 'rooneys',
 'archeology',
 'pscychosexual',
 'plebes',
 'mib',
 'radicalized',
 'kits',
 'woodworking',
 'realty',
 'hangout',
 'kooky',
 'envies',
 'dally',
 'haydn',
 'adequate',
 'kaleidiscopic',
 'occur',
 'refusal',
 'existience',
 'astaire',
 'metallers',
 'saath',
 'xvi',
 'jackman',
 'perth',
 'melissa',
 'dispatcher',
 'desultory',
 'kostelanitz',
 'anansie',
 'stratton',
 'loather',
 'jazzist',
 'marines',
 'odete',
 'jetty',
 'corroding',
 'motionlessly',
 'hoss',
 'billion',
 'pshycological',
 'precondition',
 'infective',
 'bemusedly',
 'fjaestad',
 'deanesque',
 'argumentation',
 'ruler',
 'consquence',
 'suprematy',
 'demonic',
 'raschid',
 'thesp',
 'titillated',
 'daerden',
 'queuing',
 'libya',
 'khmer',
 'solder',
 'barranco',
 'moveis',
 'hawki',
 'recreated',
 'survivor',
 'kp',
 'labored',
 'vines',
 'defeatist',
 'financing',
 'edendale',
 'nr',
 'patrols',
 'tweaks',
 'gryphons',
 'finds',
 'understood',
 'ingenuity',
 'stitch',
 'jiving',
 'neuroticism',
 'iba',
 'misc',
 'yarn',
 'libed',
 'severison',
 'patched',
 'pols',
 'ullal',
 'amenabar',
 'sixstar',
 'simply',
 'divergences',
 'boobytraps',
 'gelded',
 'fulfil',
 'kelippoth',
 'snow',
 'rich',
 'brims',
 'movielink',
 'gemmell',
 'imagina',
 'granzow',
 'psyching',
 'gutting',
 'monteiro',
 'confiscation',
 'ishtar',
 'marcello',
 'decay',
 'wanters',
 'hough',
 'unfortunate',
 'rachels',
 'wishy',
 'acceded',
 'rescinds',
 'wrung',
 'branches',
 'unnesicary',
 'burdening',
 'examination',
 'wastage',
 'overarching',
 'vander',
 'writen',
 'oklar',
 'repercussion',
 'clauses',
 'nazism',
 'aroona',
 'sathoor',
 'martins',
 'atop',
 'cheapened',
 'tushes',
 'rca',
 'proportioned',
 'indianapolis',
 'huxley',
 'stereophonics',
 'montreux',
 'wandering',
 'nightfire',
 'quivering',
 'hedonism',
 'fracturing',
 'prised',
 'addictions',
 'buckshot',
 'jabez',
 'gyppos',
 'stick',
 'paycock',
 'malick',
 'halliday',
 'congratulation',
 'ornaments',
 'marquez',
 'underpin',
 'iconor',
 'visby',
 'wickedly',
 'occident',
 'peracaula',
 'dildar',
 'tingling',
 'obstructs',
 'convolute',
 'smarts',
 'unnamed',
 'spoofy',
 'kukkonen',
 'mid',
 'finletter',
 'defer',
 'rapes',
 'revere',
 'loveable',
 'flatley',
 'nihilists',
 'takeout',
 'iron',
 'objects',
 'prospers',
 'ordination',
 'forrester',
 'disarm',
 'anaglyph',
 'druidic',
 'nautical',
 'sarlac',
 'sipping',
 'tenebra',
 'launches',
 'socomm',
 'rapped',
 'courttv',
 'ghidora',
 'variants',
 'buried',
 'tinned',
 'kavner',
 'subbed',
 'grandmaster',
 'chastised',
 'snapper',
 'nella',
 'baccalaurat',
 'freshette',
 'borrowed',
 'furnishing',
 'forcibly',
 'shahi',
 'tmavomodr',
 'valid',
 'burglars',
 'starstruck',
 'geneva',
 'concieved',
 'comparable',
 'ffwd',
 'goldstien',
 'deeper',
 'poke',
 'brattiest',
 'synthesizer',
 'unexplained',
 'celticism',
 'dennison',
 'oscillators',
 'indiscretion',
 'tuvok',
 'del',
 'astrologist',
 'lujn',
 'perceptible',
 'sands',
 'consuming',
 'gorehound',
 'amants',
 'brutalised',
 'breathlessly',
 'canines',
 'rodriquez',
 'cutters',
 'thimbles',
 'dont',
 'landesberg',
 'risqu',
 'ssg',
 'yasnaya',
 'honhyol',
 'spaceflight',
 'cheeky',
 'destiny',
 'stunners',
 'compromises',
 'trippy',
 'rewinded',
 'fetal',
 'visualized',
 'experiential',
 'nearne',
 ...]

In [17]:
import numpy as np

layer_0 = np.zeros((1,vocab_size))
layer_0


Out[17]:
array([[ 0.,  0.,  0., ...,  0.,  0.,  0.]])

In [18]:
from IPython.display import Image
Image(filename='sentiment_network.png')


Out[18]:

In [19]:
word2index = {}

for i,word in enumerate(vocab):
    word2index[word] = i
word2index


Out[19]:
{'': 0,
 'zealander': 1,
 'subjugation': 2,
 'sussanah': 3,
 'mantra': 4,
 'roz': 5,
 'arthouse': 6,
 'coffeshop': 7,
 'impressing': 8,
 'vicente': 9,
 'accentuated': 10,
 'mooning': 11,
 'saat': 12,
 'schuer': 13,
 'flemmish': 14,
 'yoon': 15,
 'ringers': 16,
 'looonnnggg': 17,
 'hagel': 18,
 'husband': 19,
 'flicka': 20,
 'mostof': 21,
 'haenel': 22,
 'wickerman': 23,
 'swaps': 24,
 'tyrannosaurus': 25,
 'doosre': 26,
 'defrosts': 27,
 'coax': 28,
 'unwatchably': 29,
 'garret': 30,
 'isild': 31,
 'reveal': 32,
 'amc': 33,
 'resided': 34,
 'adaptaion': 35,
 'streamwood': 36,
 'madsen': 37,
 'hg': 38,
 'longueurs': 39,
 'hoydenish': 40,
 'keeranor': 41,
 'looters': 42,
 'supertank': 43,
 'sommersault': 44,
 'buttress': 45,
 'baldwin': 46,
 'world': 47,
 'thare': 48,
 'vulcans': 49,
 'wordplay': 50,
 'pembrook': 51,
 'garrel': 52,
 'windblown': 53,
 'baton': 54,
 'barbells': 55,
 'huddles': 56,
 'sssssssssssooooooooooooo': 57,
 'brentwood': 58,
 'spielbergian': 59,
 'yalu': 60,
 'freke': 61,
 'woodrell': 62,
 'alejandra': 63,
 'msr': 64,
 'expertise': 65,
 'quickest': 66,
 'brigadier': 67,
 'mari': 68,
 'undertaste': 69,
 'rvds': 70,
 'scarynot': 71,
 'sumire': 72,
 'saddam': 73,
 'obnoxious': 74,
 'pilfered': 75,
 'catologed': 76,
 'thomilson': 77,
 'pernicious': 78,
 'landscaped': 79,
 'unpredictably': 80,
 'moe': 81,
 'clog': 82,
 'ralston': 83,
 'jude': 84,
 'pay': 85,
 'saving': 86,
 'sowing': 87,
 'stompers': 88,
 'pojar': 89,
 'letdown': 90,
 'whooshing': 91,
 'dissapointing': 92,
 'venereal': 93,
 'althogh': 94,
 'dimension': 95,
 'capitulates': 96,
 'harpy': 97,
 'plotsidney': 98,
 'irreversibly': 99,
 'extremist': 100,
 'yakkity': 101,
 'nikolett': 102,
 'nicolosi': 103,
 'koyuki': 104,
 'julia': 105,
 'shadix': 106,
 'matsuda': 107,
 'farting': 108,
 'azjazz': 109,
 'taxed': 110,
 'assuredness': 111,
 'donkeys': 112,
 'tryout': 113,
 'comdie': 114,
 'heretic': 115,
 'underestimate': 116,
 'farily': 117,
 'belched': 118,
 'intercepts': 119,
 'elan': 120,
 'sleepless': 121,
 'uproar': 122,
 'valeria': 123,
 'spook': 124,
 'cos': 125,
 'freud': 126,
 'coffeehouse': 127,
 'bletchly': 128,
 'decently': 129,
 'spreader': 130,
 'arejohn': 131,
 'somebody': 132,
 'soma': 133,
 'guineas': 134,
 'mondrians': 135,
 'iene': 136,
 'cosima': 137,
 'sling': 138,
 'matinees': 139,
 'addy': 140,
 'chided': 141,
 'cumentery': 142,
 'recogniton': 143,
 'investigations': 144,
 'lionized': 145,
 'ported': 146,
 'serpent': 147,
 'thieson': 148,
 'milwall': 149,
 'fetishwear': 150,
 'broached': 151,
 'covenant': 152,
 'project': 153,
 'church': 154,
 'leashes': 155,
 'pregnancy': 156,
 'fanning': 157,
 'aclear': 158,
 'fairuza': 159,
 'advertized': 160,
 'proverbs': 161,
 'duval': 162,
 'historicity': 163,
 'gauging': 164,
 'phillipe': 165,
 'unassured': 166,
 'mechanisms': 167,
 'typographic': 168,
 'mbb': 169,
 'denethor': 170,
 'standards': 171,
 'specializes': 172,
 'tolerance': 173,
 'harvery': 174,
 'cambodia': 175,
 'carla': 176,
 'wa': 177,
 'gattaca': 178,
 'castanet': 179,
 'unrealism': 180,
 'riz': 181,
 'check': 182,
 'cowboys': 183,
 'unengineered': 184,
 'poulange': 185,
 'btardly': 186,
 'chalantly': 187,
 'rekka': 188,
 'coordinator': 189,
 'jewison': 190,
 'sticklers': 191,
 'clampets': 192,
 'stockpiled': 193,
 'croc': 194,
 'shita': 195,
 'sapping': 196,
 'tvnz': 197,
 'spoilersspoilersspoilersspoilers': 198,
 'leonie': 199,
 'grandmother': 200,
 'ayn': 201,
 'muldoon': 202,
 'glaucoma': 203,
 'reommended': 204,
 'daly': 205,
 'preamble': 206,
 'chevy': 207,
 'moodily': 208,
 'peachy': 209,
 'relocating': 210,
 'ballets': 211,
 'careering': 212,
 'crazily': 213,
 'satred': 214,
 'rehearse': 215,
 'luxuriant': 216,
 'irritating': 217,
 'conjurers': 218,
 'adama': 219,
 'teapot': 220,
 'mayagi': 221,
 'revolutionised': 222,
 'scob': 223,
 'satana': 224,
 'mezrich': 225,
 'shopping': 226,
 'generalised': 227,
 'gomes': 228,
 'appetites': 229,
 'bgr': 230,
 'tripp': 231,
 'rakhi': 232,
 'dredd': 233,
 'wilfred': 234,
 'unrest': 235,
 'nosey': 236,
 'torrence': 237,
 'delouise': 238,
 'twangy': 239,
 'loving': 240,
 'insightful': 241,
 'third': 242,
 'amadeus': 243,
 'codenamedragonfly': 244,
 'flashlight': 245,
 'triviata': 246,
 'jcpenney': 247,
 'jamacian': 248,
 'moseley': 249,
 'serlingesq': 250,
 'attacker': 251,
 'neidhart': 252,
 'oilmen': 253,
 'michum': 254,
 'ecclesten': 255,
 'fluffy': 256,
 'balzac': 257,
 'simonson': 258,
 'ganja': 259,
 'crampton': 260,
 'institutions': 261,
 'yaoi': 262,
 'resulted': 263,
 'densest': 264,
 'standby': 265,
 'ravera': 266,
 'synthesiser': 267,
 'justness': 268,
 'lessened': 269,
 'successes': 270,
 'incontinuities': 271,
 'groundskeeper': 272,
 'lesley': 273,
 'kakka': 274,
 'diomede': 275,
 'futher': 276,
 'shiraki': 277,
 'untraditional': 278,
 'loosening': 279,
 'undifferentiated': 280,
 'referenced': 281,
 'koko': 282,
 'hellbent': 283,
 'diaphanous': 284,
 'fainting': 285,
 'voudon': 286,
 'searching': 287,
 'investigation': 288,
 'delon': 289,
 'hankies': 290,
 'stains': 291,
 'dierdre': 292,
 'skillfully': 293,
 'radcliffe': 294,
 'phipps': 295,
 'roberte': 296,
 'unceremoniously': 297,
 'isao': 298,
 'partioned': 299,
 'honoria': 300,
 'backstabbed': 301,
 'brasil': 302,
 'schmoke': 303,
 'americanime': 304,
 'diminutive': 305,
 'retried': 306,
 'succeed': 307,
 'shoot': 308,
 'constructor': 309,
 'undoubtedly': 310,
 'decapitations': 311,
 'heartbreaker': 312,
 'ggooooodd': 313,
 'court': 314,
 'sheng': 315,
 'tacoma': 316,
 'retinas': 317,
 'carolyn': 318,
 'likability': 319,
 'gremlin': 320,
 'tatsuya': 321,
 'indulgent': 322,
 'decrees': 323,
 'phoebus': 324,
 'wells': 325,
 'nickolson': 326,
 'vacuum': 327,
 'dir': 328,
 'firsthand': 329,
 'establish': 330,
 'surprising': 331,
 'denouement': 332,
 'casavettes': 333,
 'torrences': 334,
 'mee': 335,
 'gimmeclassics': 336,
 'meditative': 337,
 'heatbeats': 338,
 'danira': 339,
 'plaguing': 340,
 'sprinkles': 341,
 'steretyped': 342,
 'strap': 343,
 'twomarlowe': 344,
 'hellborn': 345,
 'volnay': 346,
 'precarious': 347,
 'jefferies': 348,
 'hampering': 349,
 'naggy': 350,
 'adjuster': 351,
 'affaire': 352,
 'resold': 353,
 'exorcismo': 354,
 'ladder': 355,
 'handbags': 356,
 'huntz': 357,
 'squeakiest': 358,
 'paley': 359,
 'quakerly': 360,
 'druggies': 361,
 'dharma': 362,
 'prosaically': 363,
 'sudbury': 364,
 'smurfs': 365,
 'keyed': 366,
 'vindhyan': 367,
 'lioness': 368,
 'jalouse': 369,
 'defilement': 370,
 'unbefitting': 371,
 'horor': 372,
 'knowingis': 373,
 'spender': 374,
 'jaid': 375,
 'moonbeam': 376,
 'tout': 377,
 'laural': 378,
 'flaunts': 379,
 'scrounge': 380,
 'connolly': 381,
 'cusack': 382,
 'depend': 383,
 'waffles': 384,
 'grieco': 385,
 'voiceover': 386,
 'pone': 387,
 'phased': 388,
 'ruman': 389,
 'biggen': 390,
 'channel': 391,
 'feely': 392,
 'gotell': 393,
 'patrics': 394,
 'acclaim': 395,
 'moronie': 396,
 'woar': 397,
 'johnnys': 398,
 'puzzlement': 399,
 'lololol': 400,
 'commonsense': 401,
 'irmo': 402,
 'artless': 403,
 'begrudges': 404,
 'versace': 405,
 'actualy': 406,
 'verdicts': 407,
 'bitchy': 408,
 'smooching': 409,
 'gazarra': 410,
 'unthoughtful': 411,
 'mindless': 412,
 'anand': 413,
 'salina': 414,
 'belter': 415,
 'suicune': 416,
 'enthused': 417,
 'aviation': 418,
 'largo': 419,
 'rf': 420,
 'zilch': 421,
 'slabs': 422,
 'murkwood': 423,
 'chong': 424,
 'guildenstern': 425,
 'landlords': 426,
 'recon': 427,
 'boatthus': 428,
 'sayre': 429,
 'carley': 430,
 'feature': 431,
 'ouverte': 432,
 'tournier': 433,
 'imprint': 434,
 'shaped': 435,
 'genndy': 436,
 'garages': 437,
 'appropriately': 438,
 'shiztz': 439,
 'splatterfest': 440,
 'bushwhacker': 441,
 'canteens': 442,
 'castmember': 443,
 'candice': 444,
 'pluck': 445,
 'barantini': 446,
 'skeleton': 447,
 'counts': 448,
 'ich': 449,
 'iglesia': 450,
 'ilkka': 451,
 'mafioso': 452,
 'gentlemanly': 453,
 'binev': 454,
 'phonebooth': 455,
 'ardala': 456,
 'dirties': 457,
 'unengaged': 458,
 'bierce': 459,
 'hobos': 460,
 'santeria': 461,
 'satires': 462,
 'unite': 463,
 'oppressed': 464,
 'hypothermia': 465,
 'pecker': 466,
 'statuette': 467,
 'mouthpiece': 468,
 'easterners': 469,
 'hottest': 470,
 'hounded': 471,
 'nationals': 472,
 'virgin': 473,
 'monolog': 474,
 'yound': 475,
 'logon': 476,
 'carpentry': 477,
 'characterized': 478,
 'offing': 479,
 'venal': 480,
 'irresistibly': 481,
 'tenuous': 482,
 'disrespecting': 483,
 'obscenely': 484,
 'ploughs': 485,
 'hot': 486,
 'celebertis': 487,
 'nighter': 488,
 'afterwards': 489,
 'anatomical': 490,
 'ichikawa': 491,
 'handily': 492,
 'highways': 493,
 'watching': 494,
 'existant': 495,
 'paraphrasing': 496,
 'mopes': 497,
 'ks': 498,
 'misquote': 499,
 'jerkiness': 500,
 'dallenbach': 501,
 'betwixt': 502,
 'nagasaki': 503,
 'unpretensive': 504,
 'wolfen': 505,
 'prinze': 506,
 'biter': 507,
 'dresler': 508,
 'wristbands': 509,
 'crater': 510,
 'uff': 511,
 'korte': 512,
 'possessingand': 513,
 'resmblance': 514,
 'unselfishly': 515,
 'fifi': 516,
 'aristide': 517,
 'pearson': 518,
 'gulager': 519,
 'inexplicably': 520,
 'vincenzio': 521,
 'dernier': 522,
 'bodypress': 523,
 'janel': 524,
 'hoffmann': 525,
 'consolation': 526,
 'tremont': 527,
 'personnel': 528,
 'artimisia': 529,
 'juliet': 530,
 'inelegant': 531,
 'investigators': 532,
 'birney': 533,
 'yolonda': 534,
 'liberates': 535,
 'virtual': 536,
 'cements': 537,
 'kabala': 538,
 'callaghan': 539,
 'disagreed': 540,
 'sadler': 541,
 'reba': 542,
 'grasper': 543,
 'sheridan': 544,
 'fanatasy': 545,
 'hemispheres': 546,
 'mehras': 547,
 'drollness': 548,
 'reteaming': 549,
 'georgeann': 550,
 'insurgents': 551,
 'ardent': 552,
 'ronnies': 553,
 'applicant': 554,
 'watanbe': 555,
 'smuggled': 556,
 'ashmit': 557,
 'dorfmann': 558,
 'hairspray': 559,
 'barwood': 560,
 'inconsiderate': 561,
 'tottering': 562,
 'theatrically': 563,
 'sgc': 564,
 'facilitate': 565,
 'nhl': 566,
 'cried': 567,
 'pythons': 568,
 'somers': 569,
 'mandylor': 570,
 'pollination': 571,
 'idiom': 572,
 'skivvy': 573,
 'cochran': 574,
 'caddy': 575,
 'tutors': 576,
 'masseratti': 577,
 'inlay': 578,
 'klara': 579,
 'spliced': 580,
 'treachery': 581,
 'smithereens': 582,
 'clin': 583,
 'underwent': 584,
 'branaughs': 585,
 'budgetness': 586,
 'putty': 587,
 'bruckner': 588,
 'pas': 589,
 'implodes': 590,
 'couer': 591,
 'harlin': 592,
 'cobblestones': 593,
 'cataclysmic': 594,
 'belpre': 595,
 'speaking': 596,
 'guaranteeing': 597,
 'roeh': 598,
 'macquire': 599,
 'bestseller': 600,
 'pdf': 601,
 'discord': 602,
 'natali': 603,
 'taxidermist': 604,
 'skelter': 605,
 'counterpointing': 606,
 'topper': 607,
 'synchronicity': 608,
 'coitus': 609,
 'schrab': 610,
 'scandinavian': 611,
 'calvinist': 612,
 'abductors': 613,
 'predecessors': 614,
 'stroked': 615,
 'realy': 616,
 'blesses': 617,
 'embodiments': 618,
 'barbera': 619,
 'murrow': 620,
 'assuring': 621,
 'leaches': 622,
 'kempo': 623,
 'loyd': 624,
 'squirrelly': 625,
 'businesswoman': 626,
 'fraud': 627,
 'moive': 628,
 'cineplex': 629,
 'mazzucato': 630,
 'consacrates': 631,
 'sigel': 632,
 'mills': 633,
 'remarries': 634,
 'razzoff': 635,
 'taekwon': 636,
 'fiji': 637,
 'persecuted': 638,
 'colli': 639,
 'scoped': 640,
 'mnard': 641,
 'willock': 642,
 'allotted': 643,
 'drudgery': 644,
 'reardon': 645,
 'cellphone': 646,
 'photocopied': 647,
 'barbs': 648,
 'malfeasance': 649,
 'shreveport': 650,
 'weasing': 651,
 'dangerously': 652,
 'lemmings': 653,
 'pendant': 654,
 'dewan': 655,
 'material': 656,
 'spinoffs': 657,
 'anim': 658,
 'jehovahs': 659,
 'dutta': 660,
 'unexpressed': 661,
 'olsson': 662,
 'petrochemical': 663,
 'suess': 664,
 'aligning': 665,
 'overdose': 666,
 'rehearsal': 667,
 'extinguisher': 668,
 'carre': 669,
 'misconduct': 670,
 'usis': 671,
 'balcan': 672,
 'pigozzi': 673,
 'aghhh': 674,
 'intention': 675,
 'rubbing': 676,
 'unbound': 677,
 'rgv': 678,
 'glenn': 679,
 'stockton': 680,
 'majidi': 681,
 'ingenuous': 682,
 'fritz': 683,
 'dint': 684,
 'pointing': 685,
 'perce': 686,
 'accommodating': 687,
 'womanhood': 688,
 'willians': 689,
 'harmoniously': 690,
 'blessings': 691,
 'mcbeak': 692,
 'nonentity': 693,
 'laemlee': 694,
 'summoning': 695,
 'payne': 696,
 'prescence': 697,
 'gangrene': 698,
 'guarontee': 699,
 'alun': 700,
 'fling': 701,
 'tungtvannet': 702,
 'fellows': 703,
 'screenshots': 704,
 'enthralling': 705,
 'eraserhead': 706,
 'messel': 707,
 'incubates': 708,
 'queues': 709,
 'xvii': 710,
 'join': 711,
 'sync': 712,
 'volo': 713,
 'tromas': 714,
 'kuroda': 715,
 'gauleiter': 716,
 'subsequences': 717,
 'richard': 718,
 'gullet': 719,
 'okiyas': 720,
 'immemorial': 721,
 'slappings': 722,
 'abigil': 723,
 'hesitation': 724,
 'locality': 725,
 'levon': 726,
 'simn': 727,
 'pantyhose': 728,
 'armin': 729,
 'adventurously': 730,
 'camerawith': 731,
 'crappiest': 732,
 'inaugurate': 733,
 'torero': 734,
 'prisoner': 735,
 'rooneys': 736,
 'archeology': 737,
 'pscychosexual': 738,
 'plebes': 739,
 'mib': 740,
 'radicalized': 741,
 'kits': 742,
 'woodworking': 743,
 'realty': 744,
 'hangout': 745,
 'kooky': 746,
 'envies': 747,
 'dally': 748,
 'haydn': 749,
 'adequate': 750,
 'kaleidiscopic': 751,
 'occur': 752,
 'refusal': 753,
 'existience': 754,
 'astaire': 755,
 'metallers': 756,
 'saath': 757,
 'xvi': 758,
 'jackman': 759,
 'perth': 760,
 'melissa': 761,
 'dispatcher': 762,
 'desultory': 763,
 'kostelanitz': 764,
 'anansie': 765,
 'stratton': 766,
 'loather': 767,
 'jazzist': 768,
 'marines': 769,
 'odete': 770,
 'jetty': 771,
 'corroding': 772,
 'motionlessly': 773,
 'hoss': 774,
 'billion': 775,
 'pshycological': 776,
 'precondition': 777,
 'infective': 778,
 'bemusedly': 779,
 'fjaestad': 780,
 'deanesque': 781,
 'argumentation': 782,
 'ruler': 783,
 'consquence': 784,
 'suprematy': 785,
 'demonic': 786,
 'raschid': 787,
 'thesp': 788,
 'titillated': 789,
 'daerden': 790,
 'queuing': 791,
 'libya': 792,
 'khmer': 793,
 'solder': 794,
 'barranco': 795,
 'moveis': 796,
 'hawki': 797,
 'recreated': 798,
 'survivor': 799,
 'kp': 800,
 'labored': 801,
 'vines': 802,
 'defeatist': 803,
 'financing': 804,
 'edendale': 805,
 'nr': 806,
 'patrols': 807,
 'tweaks': 808,
 'gryphons': 809,
 'finds': 810,
 'understood': 811,
 'ingenuity': 812,
 'stitch': 813,
 'jiving': 814,
 'neuroticism': 815,
 'iba': 816,
 'misc': 817,
 'yarn': 818,
 'libed': 819,
 'severison': 820,
 'patched': 821,
 'pols': 822,
 'ullal': 823,
 'amenabar': 824,
 'sixstar': 825,
 'simply': 826,
 'divergences': 827,
 'boobytraps': 828,
 'gelded': 829,
 'fulfil': 830,
 'kelippoth': 831,
 'snow': 832,
 'rich': 833,
 'brims': 834,
 'movielink': 835,
 'gemmell': 836,
 'imagina': 837,
 'granzow': 838,
 'psyching': 839,
 'gutting': 840,
 'monteiro': 841,
 'confiscation': 842,
 'ishtar': 843,
 'marcello': 844,
 'decay': 845,
 'wanters': 846,
 'hough': 847,
 'unfortunate': 848,
 'rachels': 849,
 'wishy': 850,
 'acceded': 851,
 'rescinds': 852,
 'wrung': 853,
 'branches': 854,
 'unnesicary': 855,
 'burdening': 856,
 'examination': 857,
 'wastage': 858,
 'overarching': 859,
 'vander': 860,
 'writen': 861,
 'oklar': 862,
 'repercussion': 863,
 'clauses': 864,
 'nazism': 865,
 'aroona': 866,
 'sathoor': 867,
 'martins': 868,
 'atop': 869,
 'cheapened': 870,
 'tushes': 871,
 'rca': 872,
 'proportioned': 873,
 'indianapolis': 874,
 'huxley': 875,
 'stereophonics': 876,
 'montreux': 877,
 'wandering': 878,
 'nightfire': 879,
 'quivering': 880,
 'hedonism': 881,
 'fracturing': 882,
 'prised': 883,
 'addictions': 884,
 'buckshot': 885,
 'jabez': 886,
 'gyppos': 887,
 'stick': 888,
 'paycock': 889,
 'malick': 890,
 'halliday': 891,
 'congratulation': 892,
 'ornaments': 893,
 'marquez': 894,
 'underpin': 895,
 'iconor': 896,
 'visby': 897,
 'wickedly': 898,
 'occident': 899,
 'peracaula': 900,
 'dildar': 901,
 'tingling': 902,
 'obstructs': 903,
 'convolute': 904,
 'smarts': 905,
 'unnamed': 906,
 'spoofy': 907,
 'kukkonen': 908,
 'mid': 909,
 'finletter': 910,
 'defer': 911,
 'rapes': 912,
 'revere': 913,
 'loveable': 914,
 'flatley': 915,
 'nihilists': 916,
 'takeout': 917,
 'iron': 918,
 'objects': 919,
 'prospers': 920,
 'ordination': 921,
 'forrester': 922,
 'disarm': 923,
 'anaglyph': 924,
 'druidic': 925,
 'nautical': 926,
 'sarlac': 927,
 'sipping': 928,
 'tenebra': 929,
 'launches': 930,
 'socomm': 931,
 'rapped': 932,
 'courttv': 933,
 'ghidora': 934,
 'variants': 935,
 'buried': 936,
 'tinned': 937,
 'kavner': 938,
 'subbed': 939,
 'grandmaster': 940,
 'chastised': 941,
 'snapper': 942,
 'nella': 943,
 'baccalaurat': 944,
 'freshette': 945,
 'borrowed': 946,
 'furnishing': 947,
 'forcibly': 948,
 'shahi': 949,
 'tmavomodr': 950,
 'valid': 951,
 'burglars': 952,
 'starstruck': 953,
 'geneva': 954,
 'concieved': 955,
 'comparable': 956,
 'ffwd': 957,
 'goldstien': 958,
 'deeper': 959,
 'poke': 960,
 'brattiest': 961,
 'synthesizer': 962,
 'unexplained': 963,
 'celticism': 964,
 'dennison': 965,
 'oscillators': 966,
 'indiscretion': 967,
 'tuvok': 968,
 'del': 969,
 'astrologist': 970,
 'lujn': 971,
 'perceptible': 972,
 'sands': 973,
 'consuming': 974,
 'gorehound': 975,
 'amants': 976,
 'brutalised': 977,
 'breathlessly': 978,
 'canines': 979,
 'rodriquez': 980,
 'cutters': 981,
 'thimbles': 982,
 'dont': 983,
 'landesberg': 984,
 'risqu': 985,
 'ssg': 986,
 'yasnaya': 987,
 'honhyol': 988,
 'spaceflight': 989,
 'cheeky': 990,
 'destiny': 991,
 'stunners': 992,
 'compromises': 993,
 'trippy': 994,
 'rewinded': 995,
 'fetal': 996,
 'visualized': 997,
 'experiential': 998,
 'nearne': 999,
 ...}

In [20]:
def update_input_layer(review):
    
    global layer_0
    
    # clear out previous state, reset the layer to be all 0s
    layer_0 *= 0
    for word in review.split(" "):
        layer_0[0][word2index[word]] += 1

update_input_layer(reviews[0])

In [21]:
layer_0


Out[21]:
array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

In [22]:
def get_target_for_label(label):
    if(label == 'POSITIVE'):
        return 1
    else:
        return 0

In [23]:
labels[0]


Out[23]:
'POSITIVE'

In [24]:
get_target_for_label(labels[0])


Out[24]:
1

In [25]:
labels[1]


Out[25]:
'NEGATIVE'

In [26]:
get_target_for_label(labels[1])


Out[26]:
0

Project 3: Building a Neural Network

  • Start with your neural network from the last chapter
  • 3 layer neural network
  • no non-linearity in hidden layer
  • use our functions to create the training data
  • create a "pre_process_data" function to create vocabulary for our training data generating functions
  • modify "train" to train over the entire corpus

Where to Get Help if You Need it


In [27]:
import time
import sys
import numpy as np

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
       
        # set our random number generator 
        np.random.seed(1)
    
        self.pre_process_data(reviews, labels)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self, reviews, labels):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
    
        
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            if(word in self.word2index.keys()):
                self.layer_0[0][self.word2index[word]] += 1
                
    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def train(self, training_reviews, training_labels):
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer
            self.update_input_layer(review)

            # Hidden layer
            layer_1 = self.layer_0.dot(self.weights_0_1)

            # Output layer
            layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # TODO: Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # TODO: Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # TODO: Update the weights
            self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
            if(i % 2500 == 0):
                print("")
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer
        self.update_input_layer(review.lower())

        # Hidden layer
        layer_1 = self.layer_0.dot(self.weights_0_1)

        # Output layer
        layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [87]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)

In [61]:
# evaluate our model before training (just to show how horrible it is)
mlp.test(reviews[-1000:],labels[-1000:])


Progress:99.9% Speed(reviews/sec):587.5% #Correct:500 #Tested:1000 Testing Accuracy:50.0%

In [62]:
# train the network
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):89.58 #Correct:1250 #Trained:2501 Training Accuracy:49.9%
Progress:20.8% Speed(reviews/sec):95.03 #Correct:2500 #Trained:5001 Training Accuracy:49.9%
Progress:27.4% Speed(reviews/sec):95.46 #Correct:3295 #Trained:6592 Training Accuracy:49.9%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-62-d0f5d85ad402> in <module>()
      1 # train the network
----> 2 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-59-6334c4ec4642> in train(self, training_reviews, training_labels)
    117             # TODO: Update the weights
    118             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 119             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
    120 
    121             if(np.abs(layer_2_error) < 0.5):

KeyboardInterrupt: 

In [63]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.01)

In [64]:
# train the network
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):96.39 #Correct:1247 #Trained:2501 Training Accuracy:49.8%
Progress:20.8% Speed(reviews/sec):99.31 #Correct:2497 #Trained:5001 Training Accuracy:49.9%
Progress:22.8% Speed(reviews/sec):99.02 #Correct:2735 #Trained:5476 Training Accuracy:49.9%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-64-d0f5d85ad402> in <module>()
      1 # train the network
----> 2 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-59-6334c4ec4642> in train(self, training_reviews, training_labels)
    117             # TODO: Update the weights
    118             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 119             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
    120 
    121             if(np.abs(layer_2_error) < 0.5):

KeyboardInterrupt: 

In [65]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001)

In [66]:
# train the network
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):98.77 #Correct:1267 #Trained:2501 Training Accuracy:50.6%
Progress:20.8% Speed(reviews/sec):98.79 #Correct:2640 #Trained:5001 Training Accuracy:52.7%
Progress:31.2% Speed(reviews/sec):98.58 #Correct:4109 #Trained:7501 Training Accuracy:54.7%
Progress:41.6% Speed(reviews/sec):93.78 #Correct:5638 #Trained:10001 Training Accuracy:56.3%
Progress:52.0% Speed(reviews/sec):91.76 #Correct:7246 #Trained:12501 Training Accuracy:57.9%
Progress:62.5% Speed(reviews/sec):92.42 #Correct:8841 #Trained:15001 Training Accuracy:58.9%
Progress:69.4% Speed(reviews/sec):92.58 #Correct:9934 #Trained:16668 Training Accuracy:59.5%
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-66-d0f5d85ad402> in <module>()
      1 # train the network
----> 2 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-59-6334c4ec4642> in train(self, training_reviews, training_labels)
    117             # TODO: Update the weights
    118             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 119             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
    120 
    121             if(np.abs(layer_2_error) < 0.5):

KeyboardInterrupt: 

Understanding Neural Noise


In [28]:
from IPython.display import Image
Image(filename='sentiment_network.png')


Out[28]:

In [29]:
def update_input_layer(review):
    
    global layer_0
    
    # clear out previous state, reset the layer to be all 0s
    layer_0 *= 0
    for word in review.split(" "):
        layer_0[0][word2index[word]] += 1

update_input_layer(reviews[0])

In [30]:
layer_0


Out[30]:
array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

In [31]:
review_counter = Counter()

In [32]:
for word in reviews[0].split(" "):
    review_counter[word] += 1

In [33]:
review_counter.most_common()


Out[33]:
[('.', 27),
 ('', 18),
 ('the', 9),
 ('to', 6),
 ('high', 5),
 ('i', 5),
 ('bromwell', 4),
 ('is', 4),
 ('a', 4),
 ('teachers', 4),
 ('that', 4),
 ('of', 4),
 ('it', 2),
 ('at', 2),
 ('as', 2),
 ('school', 2),
 ('my', 2),
 ('in', 2),
 ('me', 2),
 ('students', 2),
 ('their', 2),
 ('student', 2),
 ('cartoon', 1),
 ('comedy', 1),
 ('ran', 1),
 ('same', 1),
 ('time', 1),
 ('some', 1),
 ('other', 1),
 ('programs', 1),
 ('about', 1),
 ('life', 1),
 ('such', 1),
 ('years', 1),
 ('teaching', 1),
 ('profession', 1),
 ('lead', 1),
 ('believe', 1),
 ('s', 1),
 ('satire', 1),
 ('much', 1),
 ('closer', 1),
 ('reality', 1),
 ('than', 1),
 ('scramble', 1),
 ('survive', 1),
 ('financially', 1),
 ('insightful', 1),
 ('who', 1),
 ('can', 1),
 ('see', 1),
 ('right', 1),
 ('through', 1),
 ('pathetic', 1),
 ('pomp', 1),
 ('pettiness', 1),
 ('whole', 1),
 ('situation', 1),
 ('all', 1),
 ('remind', 1),
 ('schools', 1),
 ('knew', 1),
 ('and', 1),
 ('when', 1),
 ('saw', 1),
 ('episode', 1),
 ('which', 1),
 ('repeatedly', 1),
 ('tried', 1),
 ('burn', 1),
 ('down', 1),
 ('immediately', 1),
 ('recalled', 1),
 ('classic', 1),
 ('line', 1),
 ('inspector', 1),
 ('m', 1),
 ('here', 1),
 ('sack', 1),
 ('one', 1),
 ('your', 1),
 ('welcome', 1),
 ('expect', 1),
 ('many', 1),
 ('adults', 1),
 ('age', 1),
 ('think', 1),
 ('far', 1),
 ('fetched', 1),
 ('what', 1),
 ('pity', 1),
 ('isn', 1),
 ('t', 1)]

Project 4: Reducing Noise in our Input Data


In [34]:
import time
import sys
import numpy as np

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
       
        # set our random number generator 
        np.random.seed(1)
    
        self.pre_process_data(reviews, labels)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self, reviews, labels):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
    
        
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            if(word in self.word2index.keys()):
                self.layer_0[0][self.word2index[word]] = 1
                
    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def train(self, training_reviews, training_labels):
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer
            self.update_input_layer(review)

            # Hidden layer
            layer_1 = self.layer_0.dot(self.weights_0_1)

            # Output layer
            layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # TODO: Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # TODO: Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # TODO: Update the weights
            self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
            if(i % 2500 == 0):
                print("")
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer
        self.update_input_layer(review.lower())

        # Hidden layer
        layer_1 = self.layer_0.dot(self.weights_0_1)

        # Output layer
        layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [83]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)

In [84]:
mlp.train(reviews[:-1000],labels[:-1000])


Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:10.4% Speed(reviews/sec):91.50 #Correct:1795 #Trained:2501 Training Accuracy:71.7%
Progress:20.8% Speed(reviews/sec):95.25 #Correct:3811 #Trained:5001 Training Accuracy:76.2%
Progress:31.2% Speed(reviews/sec):93.74 #Correct:5898 #Trained:7501 Training Accuracy:78.6%
Progress:41.6% Speed(reviews/sec):93.69 #Correct:8042 #Trained:10001 Training Accuracy:80.4%
Progress:52.0% Speed(reviews/sec):95.27 #Correct:10186 #Trained:12501 Training Accuracy:81.4%
Progress:62.5% Speed(reviews/sec):98.19 #Correct:12317 #Trained:15001 Training Accuracy:82.1%
Progress:72.9% Speed(reviews/sec):98.56 #Correct:14440 #Trained:17501 Training Accuracy:82.5%
Progress:83.3% Speed(reviews/sec):99.74 #Correct:16613 #Trained:20001 Training Accuracy:83.0%
Progress:93.7% Speed(reviews/sec):100.7 #Correct:18794 #Trained:22501 Training Accuracy:83.5%
Progress:99.9% Speed(reviews/sec):101.9 #Correct:20115 #Trained:24000 Training Accuracy:83.8%

In [85]:
# evaluate our model before training (just to show how horrible it is)
mlp.test(reviews[-1000:],labels[-1000:])


Progress:99.9% Speed(reviews/sec):832.7% #Correct:851 #Tested:1000 Testing Accuracy:85.1%

Analyzing Inefficiencies in our Network


In [35]:
Image(filename='sentiment_network_sparse.png')


Out[35]:

In [36]:
layer_0 = np.zeros(10)

In [37]:
layer_0


Out[37]:
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [38]:
layer_0[4] = 1
layer_0[9] = 1

In [39]:
layer_0


Out[39]:
array([ 0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.])

In [40]:
weights_0_1 = np.random.randn(10,5)

In [41]:
layer_0.dot(weights_0_1)


Out[41]:
array([ 2.35877694, -0.25537542, -0.33738529, -0.12451216, -1.39097081])

In [42]:
indices = [4,9]

In [43]:
layer_1 = np.zeros(5)

In [44]:
for index in indices:
    layer_1 += (weights_0_1[index])

In [45]:
layer_1


Out[45]:
array([ 2.35877694, -0.25537542, -0.33738529, -0.12451216, -1.39097081])

In [46]:
Image(filename='sentiment_network_sparse_2.png')


Out[46]:

In [87]:
import time
import sys

# Let's tweak our network from before to model these phenomena
class SentimentNetwork:
    def __init__(self, reviews,labels,hidden_nodes = 10, learning_rate = 0.1):
       
        np.random.seed(1)
    
        self.pre_process_data(reviews)
        
        self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)
        
        
    def pre_process_data(self,reviews):
        
        review_vocab = set()
        for review in reviews:
            for word in review.split(" "):
                review_vocab.add(word)
        self.review_vocab = list(review_vocab)
        
        label_vocab = set()
        for label in labels:
            label_vocab.add(label)
        
        self.label_vocab = list(label_vocab)
        
        self.review_vocab_size = len(self.review_vocab)
        self.label_vocab_size = len(self.label_vocab)
        
        self.word2index = {}
        for i, word in enumerate(self.review_vocab):
            self.word2index[word] = i
        
        self.label2index = {}
        for i, label in enumerate(self.label_vocab):
            self.label2index[label] = i
         
        
    def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))
    
        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                                (self.hidden_nodes, self.output_nodes))
        
        self.learning_rate = learning_rate
        
        self.layer_0 = np.zeros((1,input_nodes))
        self.layer_1 = np.zeros((1,hidden_nodes))
        
    def sigmoid(self,x):
        return 1 / (1 + np.exp(-x))
    
    
    def sigmoid_output_2_derivative(self,output):
        return output * (1 - output)
    
    def update_input_layer(self,review):

        # clear out previous state, reset the layer to be all 0s
        self.layer_0 *= 0
        for word in review.split(" "):
            self.layer_0[0][self.word2index[word]] = 1

    def get_target_for_label(self,label):
        if(label == 'POSITIVE'):
            return 1
        else:
            return 0
        
    def train(self, training_reviews_raw, training_labels):
        
        training_reviews = list()
        for review in training_reviews_raw:
            indices = set()
            for word in review.split(" "):
                if(word in self.word2index.keys()):
                    indices.add(self.word2index[word])
            training_reviews.append(list(indices))
        
        assert(len(training_reviews) == len(training_labels))
        
        correct_so_far = 0
        
        start = time.time()
        
        for i in range(len(training_reviews)):
            
            review = training_reviews[i]
            label = training_labels[i]
            
            #### Implement the forward pass here ####
            ### Forward pass ###

            # Input Layer

            # Hidden layer
#             layer_1 = self.layer_0.dot(self.weights_0_1)
            self.layer_1 *= 0
            for index in review:
                self.layer_1 += self.weights_0_1[index]
            
            # Output layer
            layer_2 = self.sigmoid(self.layer_1.dot(self.weights_1_2))

            #### Implement the backward pass here ####
            ### Backward pass ###

            # Output error
            layer_2_error = layer_2 - self.get_target_for_label(label) # Output layer error is the difference between desired target and actual output.
            layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2)

            # Backpropagated error
            layer_1_error = layer_2_delta.dot(self.weights_1_2.T) # errors propagated to the hidden layer
            layer_1_delta = layer_1_error # hidden layer gradients - no nonlinearity so it's the same as the error

            # Update the weights
            self.weights_1_2 -= self.layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
            
            for index in review:
                self.weights_0_1[index] -= layer_1_delta[0] * self.learning_rate # update input-to-hidden weights with gradient descent step

            if(np.abs(layer_2_error) < 0.5):
                correct_so_far += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
        
    
    def test(self, testing_reviews, testing_labels):
        
        correct = 0
        
        start = time.time()
        
        for i in range(len(testing_reviews)):
            pred = self.run(testing_reviews[i])
            if(pred == testing_labels[i]):
                correct += 1
            
            reviews_per_second = i / float(time.time() - start)
            
            sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
                             + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
                            + "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")
    
    def run(self, review):
        
        # Input Layer


        # Hidden layer
        self.layer_1 *= 0
        unique_indices = set()
        for word in review.lower().split(" "):
            if word in self.word2index.keys():
                unique_indices.add(self.word2index[word])
        for index in unique_indices:
            self.layer_1 += self.weights_0_1[index]
        
        # Output layer
        layer_2 = self.sigmoid(self.layer_1.dot(self.weights_1_2))
        
        if(layer_2[0] > 0.5):
            return "POSITIVE"
        else:
            return "NEGATIVE"

In [ ]:


In [88]:
mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)

In [89]:
mlp.train(reviews[:-1000],labels[:-1000])


Progress:99.9% Speed(reviews/sec):496.8 #Correct:20102 #Trained:24000 Training Accuracy:83.7%

In [ ]:


In [ ]: