In [1]:
import numpy as np
import pandas as pd

In [2]:
cat_01 = np.loadtxt('photocat_challenge_z021.csv', delimiter=',', dtype=str)
cat_02 = np.loadtxt('photocat_challenge_z050.csv', delimiter=',', dtype=str)
cat_03 = np.loadtxt('photocat_challenge_z090.csv', delimiter=',', dtype=str)
cat_sdss = np.loadtxt('photocat_challenge_sdss.csv', delimiter=',', dtype=str)

In [3]:
# print cat_01[0,:111]

In [4]:
# cat_jpas_part01 = cat_01[:,:111]

In [5]:
# print cat_jpas_part01

In [6]:
# print cat_01[0,141:143]

In [7]:
# cat_jpas_part02 = cat_01[:,141:143]

In [8]:
# print cat_jpas_part02

In [9]:
# print cat_01[0,115:117]

In [10]:
# print cat_01[0,111:113]

In [11]:
# print cat_01[0,113:115]

In [12]:
# print cat_01[0,143]

In [13]:
print cat_sdss[0,:111]
print cat_sdss[0,115:117]
print cat_sdss[0,111:113]
print cat_sdss[0,113:115]
print cat_sdss.shape
print '\n'
print cat_sdss[0,117:]


['galaxy_id' 'JPAS3518' 'error_JPAS3518' 'JPAS3785' 'error_JPAS3785'
 'JPAS3900' 'error_JPAS3900' 'JPAS4000' 'error_JPAS4000' 'JPAS4100'
 'error_JPAS4100' 'JPAS4200' 'error_JPAS4200' 'JPAS4300' 'error_JPAS4300'
 'JPAS4400' 'error_JPAS4400' 'JPAS4500' 'error_JPAS4500' 'JPAS4600'
 'error_JPAS4600' 'JPAS4700' 'error_JPAS4700' 'JPAS4800' 'error_JPAS4800'
 'JPAS4900' 'error_JPAS4900' 'JPAS5000' 'error_JPAS5000' 'JPAS5100'
 'error_JPAS5100' 'JPAS5200' 'error_JPAS5200' 'JPAS5300' 'error_JPAS5300'
 'JPAS5400' 'error_JPAS5400' 'JPAS5500' 'error_JPAS5500' 'JPAS5600'
 'error_JPAS5600' 'JPAS5700' 'error_JPAS5700' 'JPAS5800' 'error_JPAS5800'
 'JPAS5900' 'error_JPAS5900' 'JPAS6000' 'error_JPAS6000' 'JPAS6100'
 'error_JPAS6100' 'JPAS6200' 'error_JPAS6200' 'JPAS6300' 'error_JPAS6300'
 'JPAS6400' 'error_JPAS6400' 'JPAS6500' 'error_JPAS6500' 'JPAS6600'
 'error_JPAS6600' 'JPAS6700' 'error_JPAS6700' 'JPAS6800' 'error_JPAS6800'
 'JPAS6900' 'error_JPAS6900' 'JPAS7000' 'error_JPAS7000' 'JPAS7100'
 'error_JPAS7100' 'JPAS7200' 'error_JPAS7200' 'JPAS7300' 'error_JPAS7300'
 'JPAS7400' 'error_JPAS7400' 'JPAS7500' 'error_JPAS7500' 'JPAS7600'
 'error_JPAS7600' 'JPAS7700' 'error_JPAS7700' 'JPAS7800' 'error_JPAS7800'
 'JPAS7900' 'error_JPAS7900' 'JPAS8000' 'error_JPAS8000' 'JPAS8100'
 'error_JPAS8100' 'JPAS8200' 'error_JPAS8200' 'JPAS8300' 'error_JPAS8300'
 'JPAS8400' 'error_JPAS8400' 'JPAS8500' 'error_JPAS8500' 'JPAS8600'
 'error_JPAS8600' 'JPAS8700' 'error_JPAS8700' 'JPAS8800' 'error_JPAS8800'
 'JPAS8900' 'error_JPAS8900' 'JPAS9000' 'error_JPAS9000' 'JPAS9100'
 'error_JPAS9100']
['u_JPAS' 'error_u_JPAS']
['g_JPAS' 'error_g_JPAS']
['r_JPAS' 'error_r_JPAS']
(101, 132)


['J0378' 'error_J0378' 'J0395' 'error_J0395' 'J0410' 'error_J0410' 'J0430'
 'error_J0430' 'J0515' 'error_J0515' 'J0660' 'error_J0660' 'J0861'
 'error_J0861' 'redshift']

In [14]:
cat_jpas_01 = np.hstack((cat_01[:,:111], cat_01[:,141:143], cat_01[:,115:117], cat_01[:,111:115], cat_01[:,143:]))
cat_jpas_02 = np.hstack((cat_02[:,:111], cat_02[:,141:143], cat_02[:,115:117], cat_02[:,111:115], cat_02[:,143:]))
cat_jpas_03 = np.hstack((cat_03[:,:111], cat_03[:,141:143], cat_03[:,115:117], cat_03[:,111:115], cat_03[:,143:]))
cat_jpas_sdss = np.hstack((cat_sdss[:,:111], cat_sdss[:,115:117], cat_sdss[:,111:115], cat_sdss[:,132:]))

In [ ]:


In [15]:
cat_jpas_01 = pd.DataFrame(cat_jpas_01)
cat_jpas_01.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_z021_JPAS.csv', sep=',',
                             header=None, index=False)
cat_jpas_02 = pd.DataFrame(cat_jpas_02)
cat_jpas_02.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_z050_JPAS.csv', sep=',',
                             header=None, index=False)
cat_jpas_03 = pd.DataFrame(cat_jpas_03)
cat_jpas_03.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_z090_JPAS.csv', sep=',',
                             header=None, index=False)

cat_jpas_sdss = pd.DataFrame(cat_jpas_sdss)
cat_jpas_sdss.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_sdss_JPAS.csv', sep=',',
                             header=None, index=False)

In [16]:
print cat_01[0,117:131]
print cat_01[0,137:139]
print cat_01[0,131:133]
print cat_01[0,135:137]
print cat_01[0,133:135]
print cat_01[0,139:141]

cat_jplus_01 = np.hstack((cat_01[:,0:1], cat_01[:,117:131], cat_01[:,137:139], cat_01[:,131:133], cat_01[:,135:137], cat_01[:,133:135], cat_01[:,139:141], cat_01[:,143:]))
cat_jplus_02 = np.hstack((cat_02[:,0:1], cat_02[:,117:131], cat_02[:,137:139], cat_02[:,131:133], cat_02[:,135:137], cat_02[:,133:135], cat_02[:,139:141], cat_02[:,143:]))
cat_jplus_03 = np.hstack((cat_03[:,0:1], cat_03[:,117:131], cat_03[:,137:139], cat_03[:,131:133], cat_03[:,135:137], cat_03[:,133:135], cat_03[:,139:141], cat_03[:,143:]))
cat_jplus_sdss = np.hstack((cat_sdss[:,0:1], cat_sdss[:,117:]))

cat_jplus_01 = pd.DataFrame(cat_jplus_01)
cat_jplus_02 = pd.DataFrame(cat_jplus_02)
cat_jplus_03 = pd.DataFrame(cat_jplus_03)

cat_jplus_01.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_z021_JPLUS.csv', sep=',',
                             header=None, index=False)
cat_jplus_02 = pd.DataFrame(cat_jplus_02)
cat_jplus_02.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_z050_JPLUS.csv', sep=',',
                             header=None, index=False)
cat_jplus_03 = pd.DataFrame(cat_jplus_03)
cat_jplus_03.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_z090_JPLUS.csv', sep=',',
                             header=None, index=False)

cat_jplus_sdss = pd.DataFrame(cat_jplus_sdss)
cat_jplus_sdss.to_csv('/home/mldantas/Dropbox/DoutoradoIAG/Challenge/photocat_challenge_SDSS_JPLUS.csv', sep=',',
                             header=None, index=False)


['J0378' 'error_J0378' 'J0395' 'error_J0395' 'J0410' 'error_J0410' 'J0430'
 'error_J0430' 'J0515' 'error_J0515' 'J0660' 'error_J0660' 'J0861'
 'error_J0861']
['uJAVA' 'error_uJAVA']
['gSDSS' 'error_gSDSS']
['rSDSS' 'error_rSDSS']
['iSDSS' 'error_iSDSS']
['zSDSS' 'error_zSDSS']

In [ ]: