In [1]:
%pylab
from scipy import constants
k = constants.value('Boltzmann constant')
R = 50
In [2]:
g = lambda dB: np.power(10.,dB/10.)
In [18]:
T_A1 = 6.3; #SiGe1
G_A1 = g(47.6); #SiGe1
T_A2 = 424.; #AML016P3411
G_A2 = g(38.7)
G_P7P8 = g(-2.50)
T_P7P8 = ((1.0/G_P7P8) - 1)*(290+4)/2
G_P9P10 = g(-1.35)
T_P9P10 = ((1.0/G_P9P10) - 1)*290
G_M1 = g(-10.)
T_M1 = ((1.0/G_M1) - 1)*290
print('T_P7P8 = {0}, T_P9P10 = {1}, T_M1 = {2}'.format(T_P7P8,T_P9P10,T_M1 ))
In [19]:
T_sys = T_A1 + (T_P7P8/( G_A1 ) ) + (T_A2/( G_A1 *G_P7P8 ) ) + (T_P9P10/( G_A1 *G_P7P8* G_A2) ) + (T_M1/( G_A1 *G_P7P8* G_A2 * G_P9P10) )
print('T_sys = {0}'.format(T_sys))
In [20]:
print('system noise should be {0} V^2/Hz'.format(4*k*T_sys*R* (G_A1 *G_P7P8* G_A2 * G_P9P10*G_M1)))
In [6]:
10*np.log10(G_A1 *G_P7P8* G_A2 * G_P9P10*G_M1)
Out[6]:
In [22]:
((1.0/g(-40)) - 1)*4*g(-40)
Out[22]:
In [7]:
k
Out[7]:
In [7]: