In [1]:
%pylab


Using matplotlib backend: MacOSX
Populating the interactive namespace from numpy and matplotlib

In [16]:
def S(mu, Di, Do):
    return (mu/4.0)*(1-np.square(Di*1.0/Do))+1

In [29]:
S(20000,67,70)
S(20000,49,52)


Out[29]:
561.28106508875737

In [12]:
def B_Attenuation(mu, Di, Do):
    return 4.0*np.square(Do)*mu/(np.square(Do*(1+mu))-np.square(Di*(mu-1)))

In [27]:
B_Attenuation(20000,70,73)
B_Attenuation(20000,52,55)


Out[27]:
0.0018813774372473384

In [14]:
1/0.0024784726519025803


Out[14]:
403.47429261822106

In [35]:
def S2(mu, D1i, D1o, D2i, D2o): #D1 is inner can
    S_1 = (mu/4.0)*(1-np.square(D1i*1.0/D1o))
    S_2 = (mu/4.0)*(1-np.square(D2i*1.0/D2o))
    S12 = (1-np.square(D1o*1.0/D2i))
    Stotal = 1.0+S_1+S_2+S_1*S_2*S12
    print('Stotal is {0}, S_1 is {1}, S_2 is {2}, S12 is {3}'.format(Stotal, S_1,S_2,S12))
    
    return Stotal

In [33]:
S2(20000, 49, 52, 67,70)


S_1 is 560.281065089, S_2 is 419.387755102, S12 is 0.448163265306
Out[33]:
106287.84020341607

In [36]:
#for my can, I used thickness is 1mm. Use inscribed hex circle diameter
S2(60000,2.796-2*0.039 , 2.796, 3.2747- 2*0.039,3.2747)


Stotal is 138449.326498, S_1 is 825.236235702, S_2 is 706.05911941, S12 is 0.234983905382
Out[36]:
138449.3264980063

In [38]:
%matplotlib?

In [ ]: