In [1]:
from tensorflow import keras
In [2]:
import pandas as pd
import numpy as np
df_raw = pd.read_csv("datasets/AirQualityUCI.csv", sep=';')
In [3]:
df_raw.head()
Out[3]:
In [4]:
df = df_raw.dropna(subset=['Date'])
In [5]:
df_raw.describe()
Out[5]:
In [6]:
df.describe()
Out[6]:
In [13]:
df.columns
Out[13]:
In [7]:
df["Date"]
Out[7]:
In [8]:
df["Time"]
Out[8]:
In [9]:
df["Timestamp"] = df["Date"].map(str) + " " + df["Time"]
df["Timestamp"] = pd.to_datetime(df["Timestamp"], format="%d/%m/%Y %H.%M.%S")
In [10]:
df["Timestamp"]
Out[10]:
In [11]:
%matplotlib notebook
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [9.5, 6]
In [18]:
figure = plt.figure()
plt.plot(df["Timestamp"], df["RH"])
Out[18]:
In [ ]:
In [ ]: