In [53]:
import numpy
matrix_A = numpy.matrix('1,-1,-1,0,0,0;0,1,0,-1,-1,0;0,0,1,1,0,-1;0,6,0,0,4,0;0,0,12,0,0,8;0,0,0,0,4,-8')
matrix_B = numpy.matrix('0;0;0;20;20;0')
print("Matrix A:")
print(str(matrix_A))
print("Matrix B:")
print(matrix_B)
matrix_A_inverse = numpy.linalg.inv(matrix_A)
dot_product = numpy.dot(matrix_A_inverse,matrix_B)
#print(type(dot_product))
print('')
for i in range (0, len(dot_product)):
current_string = "current " + str(i) + ": " + str(dot_product.item(i)) + " amps"
print(current_string)
In [86]:
sigma_1 = (1 + numpy.sqrt(5)) / 2
sigma_2 = (1 - numpy.sqrt(5)) / 2
print(sigma_1)
print
coefficient_string = '%4.5f,%4.5f;%4.5f,%4.5f' % ( sigma_1, sigma_2, sigma_1**2, sigma_2**2 )
coefficient_matrix = numpy.matrix(coefficient_string)
matrix_right = numpy.matrix('1;2')
matrix_left_inverse = numpy.linalg.inv(matrix_left)
solutions = numpy.dot(matrix_left_inverse,matrix_right)
print(solutions)
print(sigma_1/numpy.sqrt(5))
print(-sigma_2/numpy.sqrt(5))
In [21]:
x2 = numpy.arange(3.0)
x1 = numpy.arange(9.0).reshape((3,3))
numpy.multiply(x1,x2)
Out[21]:
In [98]:
if type(x1) != type(sigma_1):
print(type(sigma_1))
float_test = 1 + 5**0.5
try:
print(type(len(float_test)))
except:
print('hi')