In [1]:
# Render our plots inline
%matplotlib inline
%pylab inline
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
In [2]:
# General Plotting Parameters
mpl.rcParams['figure.figsize'] = (8,5)
mpl.rcParams['lines.linewidth'] = 2.5
mpl.rcParams['font.weight'] = 'bold'
mpl.rcParams['axes.linewidth'] = 1.5
mpl.rcParams['font.size'] = 14.
mpl.rcParams['legend.fontsize'] = 12.
mpl.rcParams['axes.labelsize'] = 12.
mpl.rcParams['xtick.labelsize'] = 10.
mpl.rcParams['ytick.labelsize'] = 10.
mpl.rcParams['xtick.minor.pad'] = 4
mpl.rcParams['xtick.direction'] = 'out'
mpl.rcParams['ytick.direction'] = 'out'
#Git says this is patched, but it doesn't work from Pip --upgrade 26-mar-2015
#mpl.rcParams['xtick.minor.visible'] = True
# These are the "Tableau 20" colors as RGB.
tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14),
(255, 187, 120), (44, 160, 44), (152, 223, 138),
(148, 103, 189),
(197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127),
(199, 199, 199), (188, 189, 34), (219, 219, 141),
(23, 190, 207), (158, 218, 229),(214, 39, 40), (255, 152, 150)]
# Scale the RGB values to the [0, 1] range,
# which is the format matplotlib accepts.
for i in range(len(tableau20)):
r, g, b = tableau20[i]
tableau20[i] = (r / 255., g / 255., b / 255.)
# Specific Plotting Params
i_leu = 0
i_delta = 2
i_heu = 4
ps = 0
In [3]:
dir = 'data/random_sink/bad_csv/'
#file_HEU003 = dir + 'HEU1p_aq33_s_05_swu180_t1009_R5.csv' # HEU trade on
#file_2 = dir + 'HEU0p_aq33_s_05_swu180_t1009_R5.csv' #HEU off
#file_3 = dir + 'test3_new.csv' #HEU off (repeat)
file_HEU003 = dir + 'test.csv' # HEU trade on
file_2 = dir + 'test2.csv' #HEU off
file_3 = dir + 'test3.csv' #HEU off (repeat)
raw_data = pd.read_csv(file_HEU003)
raw_data2 = pd.read_csv(file_2)
raw_data3 = pd.read_csv(file_3)
In [ ]:
LEU = raw_data[raw_data['Prototype'] == "LEU"]
delta_LEU = raw_data[raw_data['Prototype'] == "delta_LEU"]
covert_HEU = raw_data[raw_data['Prototype'] == "covert_HEU"]
In [ ]:
LEU2 = raw_data2[raw_data2['Prototype'] == "LEU"]
delta_LEU2 = raw_data2[raw_data2['Prototype'] == "delta_LEU"]
covert_HEU2 = raw_data2[raw_data2['Prototype'] == "covert_HEU"]
LEU3 = raw_data3[raw_data3['Prototype'] == "LEU"]
delta_LEU3 = raw_data3[raw_data3['Prototype'] == "delta_LEU"]
covert_HEU3 = raw_data3[raw_data3['Prototype'] == "covert_HEU"]
In [ ]:
p_leu = plt.plot(LEU['Time'],LEU[' Quantity'], label='LEU', color=tableau20[i_leu])
p_delta = plt.plot(delta_LEU['Time'],delta_LEU[' Quantity'], label='$\delta$ LEU', color=tableau20[i_delta])
p_heu = plt.plot(covert_HEU['Time'],covert_HEU[' Quantity'], label='HEU', color=tableau20[i_heu])
plt.legend(bbox_to_anchor=(0.25, 1))
plt.xlabel('Time')
plt.ylabel('Quantity')
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
LEU_tp =(LEU[' Quantity']- LEU[' Quantity'].shift(1))
delta_LEU_tp = delta_LEU[' Quantity']- delta_LEU[' Quantity'].shift(1)
covert_HEU_tp = covert_HEU[' Quantity']- covert_HEU[' Quantity'].shift(1)
In [ ]:
LEU_tp2 =(LEU2[' Quantity']- LEU2[' Quantity'].shift(1))
delta_LEU_tp2 = delta_LEU2[' Quantity']- delta_LEU2[' Quantity'].shift(1)
covert_HEU_tp2 = covert_HEU2[' Quantity']- covert_HEU2[' Quantity'].shift(1)
LEU_tp3 =(LEU3[' Quantity']- LEU3[' Quantity'].shift(1))
delta_LEU_tp3 = delta_LEU3[' Quantity']- delta_LEU3[' Quantity'].shift(1)
covert_HEU_tp3 = covert_HEU3[' Quantity']- covert_HEU3[' Quantity'].shift(1)
In [ ]:
plt.plot(LEU2['Time'],(LEU_tp2), label='Net LEU (noHEU1)', color=tableau20[i_leu+4])
#plt.plot(LEU3['Time'],(LEU_tp3), label='Net LEU (noHEU2)', color=tableau20[i_leu+6])
plt.legend(loc = 'best')
plt.xlabel('Time')
plt.ylabel('Throughput (kg)')
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
ymin=31
ymax=35
ylim(ymin, ymax)
plt.plot(LEU2['Time'],(LEU_tp2), label='Net LEU (noHEU)', color=tableau20[i_leu+4])
plt.plot(LEU['Time'],(LEU_tp), label='Net LEU', color=tableau20[i_leu])
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Throughput (kg)')
if ps == 1:
savefig('CR_netLEU_thruput2.png')
else:
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
plt.plot(delta_LEU['Time'],delta_LEU_tp, label='$\delta$ LEU', color=tableau20[i_delta])
plt.legend(bbox_to_anchor=(0.25, 1))
plt.xlabel('Time')
plt.ylabel('Throughput (kg)')
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
plt.plot(LEU['Time'][3:],covert_HEU_tp, label='covert HEU', color=tableau20[i_heu])
plt.legend(bbox_to_anchor=(0.5, 1))
plt.xlabel('Time')
plt.ylabel('Throughput')
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
#file_4 = dir + 'HEU03p_aq33_s_05_swu180_t100_E5_n2.csv' # HEU trade on
file_4 = dir + 'HEU04p_aq33_s_05_swu180_t100_E5.csv' # HEU trade on
#file_4 = dir + 'last_test.csv' # HEU trade on
file_5 = dir + 'HEU0p_aq33_s_05_swu180_t100_E5_n5.csv' #HEU off
raw_data4 = pd.read_csv(file_4)
raw_data5 = pd.read_csv(file_5)
In [ ]:
LEU4 = raw_data4[raw_data4['Prototype'] == "LEU"]
delta_LEU4 = raw_data4[raw_data4['Prototype'] == "delta_LEU"]
covert_HEU4 = raw_data4[raw_data4['Prototype'] == "covert_HEU"]
LEU5 = raw_data5[raw_data5['Prototype'] == "LEU"]
delta_LEU5 = raw_data5[raw_data5['Prototype'] == "delta_LEU"]
covert_HEU5 = raw_data5[raw_data5['Prototype'] == "covert_HEU"]
In [ ]:
p_leu = plt.plot(LEU4['Time'],LEU4[' Quantity'], label='LEU', color=tableau20[i_leu])
p_delta = plt.plot(delta_LEU4['Time'],delta_LEU4[' Quantity'], label='$\delta$ LEU', color=tableau20[i_delta])
p_heu = plt.plot(covert_HEU4['Time'],covert_HEU4[' Quantity'], label='HEU', color=tableau20[i_heu])
plt.legend(bbox_to_anchor=(0.25, 1))
plt.xlabel('Time')
plt.ylabel('Quantity')
plt.title("$\omega$=5 diversion on $\delta$=0.03")
In [ ]:
LEU_tp4 =(LEU4[' Quantity']- LEU4[' Quantity'].shift(1))
delta_LEU_tp4 = delta_LEU4[' Quantity']- delta_LEU4[' Quantity'].shift(1)
covert_HEU_tp4 = covert_HEU4[' Quantity']- covert_HEU4[' Quantity'].shift(1)
LEU_tp5 =(LEU5[' Quantity']- LEU5[' Quantity'].shift(1))
delta_LEU_tp5 = delta_LEU5[' Quantity']- delta_LEU5[' Quantity'].shift(1)
covert_HEU_tp5 = covert_HEU5[' Quantity']- covert_HEU5[' Quantity'].shift(1)
In [ ]:
ymin=31
ymax=35
xmin=6
xmax=max(LEU4['Time'])
xlim(xmin, xmax)
ylim(ymin, ymax)
alpha = 0.3
plt.plot(LEU5['Time'],(LEU_tp5), label='Natural $\delta_LEU$', color=tableau20[i_delta], alpha=alpha)
plt.plot(LEU4['Time'],(LEU_tp4), label='Declared LEU', color=tableau20[i_leu])
#plt.plot(LEU4['Time'][4:],covert_HEU_tp4*1000+5, label='covert HEU', color=tableau20[i_heu],alpha=0.2)
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Throughput (kg)')
if ps == 1:
savefig('CR_nat_dec_E5.png')
else:
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
ymin=31
ymax=35
xmin=6
xmax=max(LEU4['Time'])
xlim(xmin, xmax)
ylim(ymin, ymax)
plt.plot(LEU5['Time'],(LEU_tp5), label='Natural $\delta_LEU$', color=tableau20[i_delta])
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Throughput (kg)')
plt.title("$\omega$=5 diversion on $\delta$=0.3")
if ps == 1:
savefig('CR_nat_dec_E5.png')
else:
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
xlim(xmin, xmax)
plt.plot(LEU5['Time'],(delta_LEU_tp5*-1)+0.08, label='Natural $\delta_LEU$', color=tableau20[i_delta], alpha=alpha)
plt.plot(LEU4['Time'],(delta_LEU_tp4*-1)+0.08, label='Declared LEU', color=tableau20[i_leu], alpha=alpha)
plt.plot(LEU4['Time'][4:],covert_HEU_tp4*2, label='covert HEU', color=tableau20[i_heu],alpha=0.3)
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('$\Delta$ Throughput (***)')
if ps == 1:
savefig('CR_test_delta_thruput2.png')
else:
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
In [ ]:
xlim(xmin, xmax)
plt.plot(LEU4['Time'][4:],covert_HEU_tp4, label='covert HEU', color=tableau20[i_heu])
plt.legend(bbox_to_anchor=(0.5, 1))
plt.xlabel('Time')
plt.ylabel('Throughput')
plt.title("$\omega$=5 diversion on $\delta$=0.3")
if ps == 1:
savefig('CR_covert_E5.png')
else:
plt.title("$\omega$=5 diversion on $\delta$=0.3")
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: