In [1]:
from math import log
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
In [2]:
def createDataSet():
dataset = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataset, labels
In [3]:
myDat, labels = createDataSet()
In [4]:
myDat
Out[4]:
In [5]:
calcShannonEnt(myDat)
Out[5]:
In [6]:
myDat[0][-1] = 'maybe'
In [7]:
myDat
Out[7]:
In [8]:
calcShannonEnt(myDat)
Out[8]:
In [9]:
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
In [10]:
myDat, labels=createDataSet()
In [11]:
myDat
Out[11]:
In [12]:
splitDataSet(myDat, 0, 1)
Out[12]:
In [13]:
splitDataSet(myDat, 0, 0)
Out[13]:
In [14]:
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
In [15]:
chooseBestFeatureToSplit(myDat)
Out[15]:
In [16]:
import operator
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
In [17]:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del labels[bestFeat]
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
In [18]:
myTree = createTree(myDat, labels)
In [19]:
myTree
Out[19]:
In [20]:
%matplotlib inline
In [21]:
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt,
xycoords="axes fraction",
xytext=centerPt, textcoords="axes fraction", va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def createPlot():
fig = plt.figure(1, facecolor='white')
fig.clf()
createPlot.ax1 = plt.subplot(111, frameon=False)
plotNode(u'决策节点', (0.5, 0.1),(0.1, 0.5), decisionNode)
plotNode(u'叶节点', (0.8, 0.1), (0.3, 0.8), leafNode)
plt.show()
In [22]:
createPlot()
In [23]:
def getNumLeafs(myTree):
numLeafs = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
thisDepth = 1 + getTreeDepth(secondDict[key])
else:
thisDepth = 1
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
In [24]:
def retrieveTree(i):
return myTree
In [25]:
getNumLeafs(myTree)
Out[25]:
In [26]:
getTreeDepth(myTree)
Out[26]:
In [27]:
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
numLeafs = getNumLeafs(myTree)
depth = getTreeDepth(myTree)
firstStr = list(myTree.keys())[0]
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW,plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
plotTree(secondDict[key], cntrPt, str(key))
else:
plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5 / plotTree.totalW
plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '')
plt.show()
In [28]:
createPlot(myTree)
In [29]:
def myCreatePlot(inTree):
fig = plt.figure(1, facecolor = 'white')
fig.clf()
#axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=True)
plotTree.totalW = float(getNumLeafs(inTree)) + 1
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = 0.0 #-0.5 / plotTree.totalW
print(plotTree.totalW)
print(plotTree.xOff)
plotTree.yOff = 1.0
plotTree(inTree, (0.5, 1.0), '')
plt.show()
In [30]:
myCreatePlot(myTree)
In [31]:
newTree = {'no surfacing':{0:'no', 1:{'flippers':{0:'no', 1:'yes'}}, 3:'maybe'}}
In [32]:
myCreatePlot(newTree)
In [33]:
createPlot(newTree)
In [34]:
newNewTree={'no surfacing':{0:'no', 1:{'flippers':{0:'no', 1:{'haha':{0:'yes', 1:{'hey':{0:'yes', 1:{'aha':{0:'yes', 1:'no'}}}}}}}}, 3:'maybe'}}
In [35]:
myCreatePlot(newNewTree)
In [36]:
createPlot(newNewTree)
In [37]:
def classify(inputTree, featLabels, testVec):
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
In [38]:
myDat, labels = createDataSet()
In [39]:
labels
Out[39]:
In [40]:
myTree
Out[40]:
In [41]:
classify(myTree, labels, [1, 0])
Out[41]:
In [42]:
classify(myTree, labels, [1, 1])
Out[42]:
In [43]:
def storeTree(inputTree, filename):
import pickle
fw = open(filename, 'wb')
pickle.dump(inputTree, fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename, 'rb')
return pickle.load(fr)
In [44]:
storeTree(myTree, 'myTree')
In [45]:
grabTree('myTree')
Out[45]:
In [46]:
fr = open('Ch03/lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
In [47]:
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
In [48]:
lensesTree = createTree(lenses, lensesLabels)
In [49]:
lensesTree
Out[49]:
In [50]:
createPlot(lensesTree)
In [ ]: