In [1]:
from numpy import *
def loadDataSet():
    dataMat = []
    labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat

def sigmoid(inX):
    return 1.0 / (1 + exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()
    m, n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n, 1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

In [2]:
dataArr, labelMat = loadDataSet()

In [3]:
weights = gradAscent(dataArr, labelMat)

In [4]:
from numpy import *
%matplotlib inline
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat, labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1, ycord1 = [], []
    xcord2, ycord2 = [], []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1])
            ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1])
            ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=10, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=10, c='green')
    #weights = weights[0]
    x = arange(-3.0, 3.0, 0.1)
    #x = array(x)
    #x = [x]
    #x = x.transpose()
    y = (- weights[0] - weights[1] * x) / weights[2]
    #print(x)
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

In [5]:
plotBestFit(weights.getA())



In [6]:
def stocGradAscent0(dataMatrix, classLabels):
    m, n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i] * weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

In [7]:
weights_stoc = stocGradAscent0(array(dataArr), labelMat)
plotBestFit(weights_stoc)



In [8]:
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m, n = shape(dataMatrix)
    weights = ones(n)
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4 / (1.0 + j + i) + 0.01
            randIndex = int(random.uniform(0, len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

In [9]:
weights_stoc1 = stocGradAscent1(array(dataArr), labelMat, 100)
plotBestFit(weights_stoc1)



In [10]:
def classifyVector(inX, weights):
    prob = sigmoid(sum(inX * weights))
    if prob > 0.5:
        return 1.0
    else:
        return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt')
    frTest = open('horseColicTest.txt')
    trainingSet, trainingLabels = [], []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500)
    errorCount = 0
    numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr = []
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):
            errorCount += 1
    errorRate = float(errorCount) / numTestVec
    print("the error rate of this test is: %f" %errorRate)
    return errorRate

def multiTest():
    numTests = 10
    errorSum = 0.0
    for k in range(numTests):
        errorSum += colicTest()
    print("after %d iterations the average error rate is: %f" %(numTests, errorSum / float(numTests)))

In [11]:
multiTest()


/home/xuewei/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWarning: overflow encountered in exp
  del sys.path[0]
the error rate of this test is: 0.373134
the error rate of this test is: 0.358209
the error rate of this test is: 0.358209
the error rate of this test is: 0.388060
the error rate of this test is: 0.417910
the error rate of this test is: 0.402985
the error rate of this test is: 0.402985
the error rate of this test is: 0.462687
the error rate of this test is: 0.343284
the error rate of this test is: 0.358209
after 10 iterations the average error rate is: 0.386567

In [ ]: