In [1]:
x = [[698.1612903,602.2580645,535.1612903,515.9677419,507.2258065,513.8709677,608,716,732.9354839,646.483871,522.5483871,494.7419355,484.516129,483.2258065,490.5806452,515.7741935,618.0322581,770.6129032,857.3870968,853.4193548,848.3548387,843.0322581,824.516129,784.7096774],
[686.9032258,588.8387097,524.483871,507.483871,500.0645161,505.7096774,599.9677419,706,722.1290323,636.5483871,536,509.2258065,497.3225806,486.2903226,485.0322581,513.0322581,616.9677419,770.8387097,857.5483871,849.8064516,843.516129,834.0967742,812.3548387,774.2258065], 24*[774]]
In [2]:
y = [1, 1, 0]
In [13]:
from sklearn.preprocessing import normalize
x_norm = normalize(x)
print x_norm
In [14]:
from sklearn import svm
clf = svm.SVC()
clf.fit(x_norm, y)
Out[14]:
In [15]:
clf.predict(normalize([[
6366.129032,
5492.590323,
4975.387097,
4851.66129,
4780.245161,
4866.445161,
5798.525806,
6693.770968,
6754.951613,
5919.303226,
5105.545161,
4919.867742,
4804.022581,
4689.051613,
4672.954839,
4964.296774,
5944.219355,
7304.648387,
7972.877419,
7882.506452,
7850.612903,
7753.345161,
7555.229032,
7177.283871
], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 24*[700]]))
Out[15]:
In [ ]:
import pandas
frame = pandas.read_csv('cf/' + str(row['orispl_code']) + '_' + row['unitid'] + '_' + str(year) + '.csv')