In [1]:
import pgmpy
In [2]:
from pgmpy.models import BayesianModel
In [8]:
model = BayesianModel([('a','b'),('c','b'),('c','d'),('b','e')])
In [10]:
model.check_model()
Out[10]:
In [15]:
model.get_independencies()
Out[15]:
In [16]:
import numpy as np
import numpy.random as npr
import pandas as pd
values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)),
columns=['a', 'b', 'c', 'd', 'e'])
In [20]:
train,test=values[:800],values[800:]
In [21]:
model.fit(train)
In [19]:
model.predict(
In [ ]: