Help on method predict in module GPy.core.gp:
predict(self, Xnew, full_cov=False, Y_metadata=None, kern=None, likelihood=None, include_likelihood=True) method of GPy.models.gp_regression.GPRegression instance
Predict the function(s) at the new point(s) Xnew. This includes the likelihood
variance added to the predicted underlying function (usually referred to as f).
In order to predict without adding in the likelihood give
`include_likelihood=False`, or refer to self.predict_noiseless().
:param Xnew: The points at which to make a prediction
:type Xnew: np.ndarray (Nnew x self.input_dim)
:param full_cov: whether to return the full covariance matrix, or just
the diagonal
:type full_cov: bool
:param Y_metadata: metadata about the predicting point to pass to the likelihood
:param kern: The kernel to use for prediction (defaults to the model
kern). this is useful for examining e.g. subprocesses.
:param bool include_likelihood: Whether or not to add likelihood noise to the predicted underlying latent function f.
:returns: (mean, var):
mean: posterior mean, a Numpy array, Nnew x self.input_dim
var: posterior variance, a Numpy array, Nnew x 1 if full_cov=False, Nnew x Nnew otherwise
If full_cov and self.input_dim > 1, the return shape of var is Nnew x Nnew x self.input_dim. If self.input_dim == 1, the return shape is Nnew x Nnew.
This is to allow for different normalizations of the output dimensions.
Note: If you want the predictive quantiles (e.g. 95% confidence interval) use :py:func:"~GPy.core.gp.GP.predict_quantiles".